CETIFICATION

SDG No:

FA34301/FA34302

Site:

BMSMC - Building 5 Area

Humacao, PR

Laboratory:

Accutest, Florida

Matrix:

Soil/Groundwater

SUMMARY:

Samples (Table 1) were collected on the BRSMC facility — Building 5 Area. The BMSMC facility is located in Humacao, PR. Samples were taken May 25, 2016 and were analyzed in Accutest, Florida that reported the data under SDG No.: FA34301 and FA34302. Results were validated using the latest validation guidelines (July, 2015) of the EPA Hazardous Waste Support Section. The analyses performed are shown in Table 1. Individual data review worksheets are enclosed for each target analyte group. The data sample organic data samples summary form shows for analytes results that were qualified.

In summary the results are valid and can be used for decision taking purposes.

Table 1. Samples analyzed and analysis performed

SAMPLE ID	SAMPLE DESCRIPTION	MATRIX	ANALYSIS PERFORMED
FA34301-1	RA7 (4-5)	Soil	VOA TCL List
FA34301-1D	RA7 (4-5) MSD	Soil	VOA TCL List
FA34301-1S	RA7 (4-5) MS	Soil	VOA TCL List
FA34301-2	MW-22 (2.7-3.7)	Soil	VOA TCL List
FA34301-3	RA7-GWD	Groundwater	VOA TCL List
FA34301-3D	RA7-GWD MSD	Groundwater	VOA TCL List
FA34301-3S	RA7-GWD MS	Groundwater	VOA TCL List
FA34301-4	TB052516	AQ – Trip Blank Water	VOA TCL List
FA34302-1	RA7-GWS	Groundwater	VOA TCL List
FA34302-2	EB05252016	AQ – Equipment Blank	VOA TCL List
FA34302-3	BPEB-28	AQ – Equipment Blank	VOA TCL List
FA34302-4	SB103 (2.5-3.5)	Soil	VOA TCL List
FA34302-5	SB103 (2.5-3.5)	Soil	VOA TCL List
FA34302-6	SB103 (6-7)	Soil	VOA TCL List
FA34302-7	MW-235 (5-6)	Soil	VOA TCL List
FA34302-8	BPEB-29	AQ – Equipment Blank	VOA TCL List

SAMPLE ID	SAMPLE DESCRIPTION	MATRIX	ANALYSIS PERFORMED
FA34302-9	SB103-GWD	Groundwater	VOA TCL List
FA34302-10	SB103-GWS	Groundwater	VOA TCL List
FA34302-11	TB052616	AQ – Trip Blank Water	VOA TCL List

Reviewer Name:

Rafael infante

Chemist License 1888

Signature:

Date:

June 11, 2016

1584958

Report of Analysis

Page 1 of 2

Client Sample ID:

RA7-GWS

Lab Sample ID:

FA34302-1 AQ - Ground Water

Matrix: Method: Project:

SW846 8260C

BMSMC, Building 5 Area, Humacao, PR

Date Sampled:

Q

J

05/25/16

Date Received: 05/27/16 Percent Solids: n/a

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	J0976893.D	1	05/28/16	SP	n/a	n/a	VJ5319
D #2							

Run #2

Purge Volume

5.0 ml

Run #1 Run #2

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units
67-64-1	Acetone	ND	25	10	ug/l
71-43-2	Benzene	ND	1.0	0.20	ug/l
100-44-7	Benzyl Chloride	ND	2.0	0.44	ug/l
74-97-5	Bromochloromethane	ND	1.0	0.42	ug/l
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l
75-25-2	Bromoform	ND	1.0	0.46	ug/l
78-93-3	2-Butanone (MEK)	ND	5.0	2.6	ug/l
75-15-0	Carbon Disulfide	0.35	2.0	0.23	ug/l
56-23-5	Carbon Tetrachloride	ND	1.0	0.30	ug/l
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l
75-00-3	Chloroethane	ND	2.0	0.63	ug/l
67-66-3	Chloroform	ND	1.0	0.30	ug/l
110-82-7	Cyclohexane	4.5	1.0	0.26	ug/l
124-48-1	Dibromochloromethane	ND	1.0	0.26	ug/l
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	0.81	ug/l
106-93-4	1,2-Dibromoethane	ND	2.0	0.33	ug/l
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.27	ug/l
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.24	ug/l
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.39	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	0.26	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	0.28	ug/l
75-35-4	1, I-Dichloroethylene	ND	1.0	0.22	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.31	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.33	ug/l
78-87-5	1,2-Dichloropropane	ND	1.0	0.34	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.26	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.25	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.25	ug/l
76-13-1	Freon 113	ND	1.0	0.32	ug/l
591-78-6	2-Hexanone	ND	10	2.0	ug/l
98-82-8	Isopropylbenzene	ND	1.0	0.33	ug/l

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Project:

Report of Analysis

Client Sample ID: RA7-GWS Lab Sample ID: FA34302-1

Matrix: AQ - Ground Water Method: SW846 8260C

BMSMC, Building 5 Area, Humacao, PR

Date Sampled: 05/25/16 **Date Received:** 05/27/16

Percent Solids: n/a

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
99-87-6	p-Isopropyltoluene	ND	1.0	0.28	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	
74-83-9	Methyl Bromide	ND	2.0	0.50	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
108-87-2	Methylcyclohexane	ND	1.0	0.23	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.4	ug/l	
1634-04-4	Methyl Tert Butyl Ether	24.8	1.0	0.20	ug/l	
100-42-5	Styrene	ND	1.0	0.24	ug/l	
75-85-4	Tert-Amyl Alcohol	ND	20	6.0	ug/l	
75-65-0	Tert-Butyl Alcohol	324	20	9.1	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.33	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.30	ug/t	
109-99-9	Tetrahydrofuran	2.5	5.0	1.4	ug/l	J
108-88-3	Toluene	ND	1.0	0.20	ug/l	•
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.51	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.20	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.37	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.27	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.50	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	1.0	0.20	ug/l	
75-01-4	Vinyl Chloride	ND	1.0	0.31	ug/l	
	m,p-Xylene	ND	2.0	0.30	ug/l	
95-47-6	o-Xylene	ND	1.0	0.26	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	102%		83-13	18%	
17060-07-0	1,2-Dichloroethane-D4	101%		79-12	25%	
2037-26-5	Toluene-D8	101%		85-11	12%	
460-00-4	4-Bromofluorobenzene	105%		83-11	18%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

By

SP

Prep Date

n/a

Page 1 of 2

Client Sample ID: Lab Sample ID:

EB05252016 FA34302-2

AQ - Equipment Blank

DF

1

Date Sampled: Date Received: 05/27/16

n/a

Q

J

05/25/16

Matrix: Method:

SW846 8260C

Percent Solids: n/a

Project:

BMSMC, Building 5 Area, Humacao, PR

Analyzed

05/28/16

Prep Batch

Analytical Batch VJ5319

Run #1 Run #2

Purge Volume

J0976894.D

Run #1

5.0 ml

File ID

Run #2

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Unite
67-64-1	Acetone	16.7	25	10	ug/l
71-43-2	Benzene	ND	1.0	0.20	ug/l
100-44-7	Benzyl Chloride	ND	2.0	0.44	ug/l
74-97-5	Bromochloromethane	ND	1.0	0.42	ug/l
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/I
75-25-2	Bromoform	ND	1.0	0.46	ug/l
78-93- 3	2-Butanone (MEK)	ND	5.0	2.6	ug/l
75-15-0	Carbon Disulfide	ND	2.0	0.23	ug/l
56-23-5	Carbon Tetrachloride	ND	1.0	0.30	ug/l
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l
75-00-3	Chloroethane	ND	2.0	0.63	ug/l
67-66-3	Chloroform	ND	1.0	0.30	ug/l
110-82-7	Cyclohexane	ND	1.0	0.26	ug/l
124-48-1	Dibromochloromethane	ND	1.0	0.26	ug/l
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	0.81	ug/l
106-93-4	1,2-Dibromoethane	ND	2.0	0.33	ug/l
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.27	ug/l
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.24	ug/l
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.39	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	0.26	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	0.28	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	0.22	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.31	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.33	ug/l
78-87-5	1,2-Dichloropropane	ND	1.0	0.34	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.26	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.25	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.25	ug/l
76-13-1	Freon 113	ND	1.0	0.32	ug/l
591-78-6	2-Hexanone	ND	10	2.0	ug/l
98-82-8	Isopropylbenzene	ND	1.0	0.33	ug/l

fael Infinte Méndez IC = 1888

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

05/25/16

05/27/16

Date Sampled:

Date Received:

Report of Analysis

Client Sample ID: EB05252016 Lab Sample ID: FA34302-2

Matrix: AQ - Equipment Blank
Method: SW846 8260C

Project: BMSMC, Buildi

SW846 8260C Percent Solids: n/a BMSMC, Building 5 Area, Humacao, PR

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
99-87-6	p-Isopropyltoluene	ND	1.0	0.28	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	
74-83-9	Methyl Bromide	ND	2.0	0.50	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
108-87-2	Methylcyclohexane	ND	1.0	0.23	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.4	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.20	ug/l	
100-42-5	Styrene	ND	1.0	0.24	ug/i	
75-85-4	Tert-Amyl Alcohol	ND	20	6.0	ug/l	
75-65-0	Tert-Butyl Alcohol	16.5	20	9.1	ug/l	J
79-34-5	1,1,2,2-Tetrachlorocthane	ND	1.0	0.33	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.30	ug/l	
109-99-9	Tetrahydrofuran	ND	5.0	1.4	ug/l	
108-88-3	Toluene	ND	1.0	0.20	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.51	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.20	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.37	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.27	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.50	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	1.0	0.20	ug/l	
75-01-4	Vinyl Chloride	ND	1.0	0.31	ug/l	
	m,p-Xylene	ND	2.0	0.30	ug/l	
95-47-6	o-Xylene	ND	1.0	0.26	ug/l	
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limi	its	
1868-53-7	Dibromofluoromethane	101%		1-88	18%	

102%

103%

104%

2037-26-5

460-00-4

17060-07-0 1,2-Dichloroethane-D4

Toluene-D8

4-Bromofluorobenzene

79-125%

85-112%

83-118%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 2

Client Sample ID:

BPEB-28 FA34302-3

Lab Sample ID:

File ID

AQ - Equipment Blank

DF

Prep Date

n/a

Date Sampled: 05/25/16 05/27/16

Matrix: Method:

SW846 8260C

Date Received:

Percent Solids:

Project:

BMSMC, Building 5 Area, Humacao, PR

Prep Batch

Analytical Batch

Run #1 Run #2

J0976895.D

Analyzed By SP 05/28/16

n/a

VJ5319

Purge Volume

Run #1

5.0 ml

Run #2

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	10	ug/l	
71-43-2	Benzene	ND	1.0	0.20	ug/l	
100-44-7	Benzyl Chloride	ND	2.0	0.44	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.42	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l	
75-25-2	Bromoform	ND	1.0	0.46	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.6	ug/l	
75-15-0	Carbon Disulfide	ND	2.0	0.23	ug/l	
56-23-5	Carbon Tetrachloride	ND	1.0	0.30	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	2.0	0.63	ug/l	
67-66-3	Chloroform	ND	1.0	0.30	ug/l	
110-82-7	Cyclohexane	ND	1.0	0.26	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.26	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	0.81	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.33	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.27	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.24	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.39	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.26	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.28	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.22	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.31	ug/I	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.33	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.34	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.26	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.25	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.25	ug/l	
76-13-1	Freon 113	ND	1.0	0.32	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.33	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Matrix:

Method:

Project:

Report of Analysis

Client Sample ID: BPEB-28 Lab Sample ID:

FA34302-3

AQ - Equipment Blank

SW846 8260C BMSMC, Building 5 Area, Humacao, PR Date Sampled: 05/25/16 Date Received: 05/27/16 Percent Solids: n/a

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
99-87-6	p-Isopropyltoluene	ND	1.0	0.28	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	
74-83-9	Methyl Bromide	ND	2.0	0.50	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
108-87-2	Methylcyclohexane	ND	1.0	0.23	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.4	ug/i	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.20	ug/l	
100-42-5	Styrene	ND	1.0	0.24	ug/l	
75-85-4	Tert-Amyl Alcohol	ND	20	6.0	ug/l	
75-65-0	Tert-Butyl Alcohol	ND	20	9.1	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.33	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.30	ug/l	
109-99-9	Tetrahydrofuran	ND	5.0	1.4	ug/l	
108-88-3	Toluene	ND	1.0	0.20	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.51	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.20	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.37	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.27	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.50	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	1.0	0.20	ug/l	
75-01-4	Vinyl Chloride	ND	1.0	0.31	ug/l	
	m,p-Xylene	ND	2.0	0.30	ug/i	
95-47-6	o-Xylene	ND	1.0	0.26	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	102%		83-11	8%	
17060-07-0	1,2-Dichloroethane-D4	103%		79-12	25%	
2037-26-5	Toluene-D8	101%		85-11	2%	
460-00-4	4-Bromofluorobenzene	106%		83-11	8%	1
						$-I_i$

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 2

Client Sample ID: SB103 (2.5-3.5) Lab Sample ID: FA34302-4

Matrix: Method:

Project:

SO - Soil

SW846 8260C SW846 5035

BMSMC, Building 5 Area, Humacao, PR

Date Sampled: 05/25/16 Date Received: 05/27/16

Percent Solids: 89.6

File ID DF **Analytical Batch** Analyzed By Prep Date Prep Batch Run #1 Y28910.D EP 05/27/16 05/27/16 12:42 VY1168 n/a

Run #2

Initial Weight

Final Volume 4.83 g $5.0 \, ml$

Run #1 Run #2

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units (Q
67-64-1	Acetone	ND	58	12	ug/kg	
71-43-2	Benzene	ND	5.8	1.5	ug/kg	
100-44-7	Benzyl Chloride	ND	5.8	1.6	ug/kg	
74-97-5	Bromochloromethane	ND	5.8	1.3	ug/kg	
75-27-4	Bromodichloromethane	ND	5.8	1.2	ug/kg	
75-25-2	Bromoform	ND	5.8	1.2	ug/kg	
78-93-3	2-Butanone (MEK)	ND	29	10	ug/kg	
75-15-0	Carbon Disulfide	ND	5.8	1.2	ug/kg	
56-23-5	Carbon Tetrachloride	ND	5.8	2.1	ug/kg	
108-90-7	Chlorobenzene	ND	5.8	1.2	ug/kg	
75-00-3	Chloroethane	ND	5.8	2.3	ug/kg	
67-66-3	Chloroform	ND	5.8	1.4	ug/kg	
110-82-7	Cyclohexane	ND	5.8	1.4	ug/kg	
124-48-1	Dibromochloromethane	ND	5.8	1.2	ug/kg	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.8	2.6	ug/kg	
106-93-4	1,2-Dibromoethane	ND	5.8	1.2	ug/kg	
75-71-8	Dichlorodifluoromethane	ND	5.8	2.9	ug/kg	
95-50-1	1,2-Dichlorobenzene	ND	5.8	1.2	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	5.8	1.2	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	5.8	1.2	ug/kg	
75-34-3	1,1-Dichloroethane	ND	5.8	1.9	ug/kg	
107-06-2	1,2-Dichloroethane	ND	5.8	1.2	ug/kg	
75-35-4	1, I-Dichloroethylene	ND	5.8	1.2	ug/kg	
156-59-2	cis-1,2-Dichloroethylene	ND	5.8	1.4	ug/kg	
156-60-5	trans-1,2-Dichloroethylene	ND	5.8	1.8	ug/kg	
78-87-5	1,2-Dichloropropane	ND	5.8	1.8	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	5.8	2.2	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	5.8	1.2	ug/kg	
100-41-4	Ethylbenzene	ND	5.8	1.3	ug/kg	
76-13-1	Freon 113	ND	5.8	1.4	ug/kg	
591-78-6	2-Hexanone	ND	29	10	ug/kg	
98-82-8	Isopropylbenzene	ND	5.8	1.6	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID: SB103 (2.5-3.5) Lab Sample ID: FA34302-4

Matrix:

SO - Soil

SW846 8260C SW846 5035

Method: Project:

BMSMC, Building 5 Area, Humacao, PR

Date Sampled: 05/25/16 Date Received: 05/27/16 Percent Solids: 89.6

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
99-87-6	p-Isopropyltoluene	ND	5.8	1.2	ug/kg	
79-20-9	Methyl Acetate	ND	29	9.9	ug/kg	
74-83-9	Methyl Bromide	ND	5.8	3.0	ug/kg	
74-87-3	Methyl Chloride	ND	5.8	2.8	ug/kg	
108-87-2	Methylcyclohexane	ND	5.8	1.2	ug/kg	
75-09-2	Methylene Chloride	ND	12	4.6	ug/kg	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	29	12	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	ND	5.8	1.3	ug/kg	
100-42-5	Styrene	ND	5.8	1.2	ug/kg	
75-85-4	Tert-Amyl Alcohol	ND	58	16	ug/kg	
75-65-0	Tert-Butyl Alcohol	ND	58	16	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	5.8	2.6	ug/kg	
127-18-4	Tetrachloroethylene	ND	5.8	1.5	ug/kg	
109-99-9	Tetrahydrofuran	ND	12	4.2	ug/kg	
108-88-3	Toluene	ND	5.8	1.3	ug/kg	
87-61-6	1,2,3-Trichlorobenzene	ND	5.8	2.3	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	5.8	1.7	ug/kg	
71-55-6	1,1,I-Trichloroethane	ND	5.8	1.2	ug/kg	
79-00-5	1,1,2-Trichloroethane	ND	5.8	2.1	ug/kg	
79-01-6	Trichloroethylene	ND	5.8	1.4	ug/kg	
75-69-4	Trichlorofluoromethane	ND	5.8	2.2	ug/kg	
95-63-6	1,2,4-Trimethylbenzene	ND	5.8	1.2	ug/kg	
75-01-4	Vinyl Chloride	ND	5.8	1.9	ug/kg	
	m,p-Xylene	ND	12	2.0	ug/kg	
95-47-6	o-Xylene	ND	5.8	1.3	ug/kg	
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	109%		75-1	24%	
17060-07-0	1,2-Dichloroethane-D4	112%		72-1	35%	
2037-26-5	Toluene-D8	98%		75-1	26%	
460-00-4	4-Bromofluorobenzene	96%		71-1	33%	3/

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

By

EP

Page 1 of 2

Client Sample ID: SB103D (2.5-3.5)

Lab Sample ID: Matrix:

FA34302-5 SO - Soil

File ID

Y28911.D

SW846 8260C SW846 5035

Date Sampled: 05/25/16

n/a

Q

Date Received: 05/27/16

Percent Solids: n/a a

Project:

Method:

BMSMC, Building 5 Area, Humacao, PR

Analyzed

05/27/16

Prep Date Prep Batch 05/27/16 12:46

Analytical Batch VY1168

Run #1 Run #2

Initial Weight

Final Volume

4.67 g

 $5.0 \, \mathrm{ml}$

DF

Run #1 Run #2

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units
67-64-1	Acetone	ND	54	11	ug/kg
71-43-2	Benzene	ND	5.4	1.3	ug/kg
100-44-7	Benzyl Chloride	ND	5.4	1.5	ug/kg
74-97-5	Bromochloromethane	ND	5.4	1.2	ug/kg
75-27-4	Bromodichloromethane	ND	5.4	1.1	ug/kg
75-25-2	Bromoform	ND	5.4	1.1	ug/kg
78-93-3	2-Butanone (MEK)	ND	27	9.7	ug/kg
75-15-0	Carbon Disulfide	ND	5.4	1.1	ug/kg
56-23-5	Carbon Tetrachloride	ND	5.4	1.9	ug/kg
108-90-7	Chlorobenzene	ND	5.4	1:1	ug/kg
75-00-3	Chloroethane	ND	5.4	2.1	ug/kg
67-66-3	Chloroform	ND	5.4	1.3	ug/kg
110-82-7	Cyclohexane	ND	5.4	1.3	ug/kg
124-48-1	Dibromochloromethane	ND	5.4	1.1	ug/kg
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.4	2.4	ug/kg
106-93-4	1,2-Dibromoethane	ND	5.4	1.1	ug/kg
75-71-8	Dichlorodifluoromethane	ND	5.4	2.7	ug/kg
95-50-1	1,2-Dichlorobenzene	ND	5.4	1.1	ug/kg
541-73-1	1,3-Dichlorobenzene	ND	5.4	1.1	ug/kg
106-46-7	1,4-Dichlorobenzene	ND	5.4	1.1	ug/kg
75-34-3	1,1-Dichloroethane	ND	5.4	1.8	ug/kg
107-06-2	1,2-Dichloroethane	ND	5.4	1.1	ug/kg
75-35-4	1,1-Dichloroethylene	ND	5.4	1.1	ug/kg
156-59-2	cis-1,2-Dichloroethylene	ND	5.4	1.3	ug/kg
156-60-5	trans-1,2-Dichloroethylene	ND	5.4	1.6	ug/kg
78-87-5	1,2-Dichloropropane	ND	5.4	1.7	ug/kg
10061-01-5	cis-1,3-Dichloropropene	ND	5.4	2.0	ug/kg
10061-02-6	trans-1,3-Dichloropropene	ND	5.4	1.1	ug/kg
100-41-4	Ethylbenzene	ND	5.4	1.2	ug/kg
76-13-1	Freon 113	ND	5.4	1.3	ug/kg
591-78-6	2-Hexanone	ND	27	9.3	ug/kg
98-82-8	Isopropyibenzene	ND	5.4	1.5	ug/kg

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID: SB103D (2.5-3.5)

Lab Sample ID:

FA34302-5

Matrix: Method: SO - Soil

Project:

SW846 8260C SW846 5035

BMSMC, Building 5 Area, Humacao, PR

Date Sampled: 05/25/16 Date Received: 05/27/16

Percent Solids: n/a a

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
99-87-6	p-Isopropyltoluene	ND	5.4	1.1=	ug/kg	
79-20-9	Methyl Acetate	ND	27	9.2	ug/kg	
74-83-9	Methyl Bromide	ND	5.4	2.8	ug/kg	
74-87-3	Methyl Chloride	ND	5.4	2.6	ug/kg	
108-87-2	Methylcyclohexane	ND	5.4	1.1	ug/kg	
75-09-2	Methylene Chloride	ND	11	4.3	ug/kg	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	27	11	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	ND	5.4	1.2	ug/kg	
100-42-5	Styrene	ND	5.4	1.1	ug/kg	
75-85-4	Tert-Amyl Alcohol	ND	54	14	ug/kg	
75-65-0	Tert-Butyl Alcohol	ND	54	15	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	5.4	2.4	ug/kg	
127-18-4	Tetrachloroethylene	ND	5.4	1.4	ug/kg	
109-99-9	Tetrahydrofuran	ND	11	3.9	ug/kg	
108-88-3	Toluene	ND	5.4	1.2	ug/kg	
87-61-6	1,2,3-Trichlorobenzene	ND	5.4	2.1	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	5.4	1.6	ug/kg	
71-55-6	1,1,1-Trichloroethane	ND	5.4	1.1	ug/kg	
79-00-5	1,1,2-Trichloroethane	ND	5.4	1.9	ug/kg	
79-01-6	Trichloroethylene	ND	5.4	1.3	ug/kg	
75-69-4	Trichlorofluoromethane	ND	5.4	2.0	ug/kg	
95-63-6	1,2,4-Trimethylbenzene	ND	5.4	1.1	ug/kg	
75-01-4	Vinyl Chloride	ND	5.4	1.8	ug/kg	
	m,p-Xylene	ND	11	1.9	ug/kg	
95-47-6	o-Xylene	ND	5.4	1.2	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	93%		75-13	24%	
17060-07-0	1,2-Dichloroethane-D4	121%		72-13	35%	
2037-26-5	Toluene-D8	104%		75-12	26%	
460-00-4	4-Bromofluorobenzene	119%		71-13	33%	

(a) All results reported on a wet weight basis.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 2

Client Sample ID: SB103 (6-7) Lab Sample ID: FA34302-6

Matrix: Method: SO - Soil

SW846 8260C SW846 5035

Date Sampled: Date Received: 05/27/16

Q

05/25/16

Project:

BMSMC, Building 5 Area, Humacao, PR

Percent Solids: 84.5

File ID DF By **Analytical Batch** Analyzed Prep Date Prep Batch Y28913.D Run #1 ΕP VY1168 1 05/27/16 05/27/16 12:50 Run #2 a 05/27/16 EP VY1168 Y28912.D 1 05/27/16 12:50

	Initial Weight	Final Volume	Methanol Aliquot
Run #1	5.02 g	5.0 ml	100 ul
Run #2	4.87 g	5.0 ml	

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units
67-64-1	Acetone	ND	3400	690	ug/kg
71-43-2	Benzene	ND	340	86	ug/kg
100-44-7	Benzyl Chloride	ND	340	95	ug/kg
74-97-5	Bromochloromethane	ND	340	76	ug/kg
75-27-4	Bromodichloromethane	ND	340	68	ug/kg
75-25-2	Bromoform	ND	340	68	ug/kg
78-93-3	2-Butanone (MEK)	ND	1700	620	ug/kg
75-15-0	Carbon Disulfide	ND	340	68	ug/kg
56-23-5	Carbon Tetrachloride	ND	340	120	ug/kg
108-90-7	Chlorobenzene	ND	340	68	ug/kg
75-00-3	Chloroethane	ND	340	140	ug/kg
67-66-3	Chloroform	ND	340	83	ug/kg
110-82-7	Cyclohexane	ND	340	83	ug/kg
124-48-1	Dibromochloromethane	ND	340	68	ug/kg
96-12-8	1,2-Dibromo-3-chloropropane	ND	340	150	ug/kg
106-93-4	1,2-Dibromoethane	ND	340	68	ug/kg
75-71-8	Dichlorodifluoromethane	ND	340	170	ug/kg
95-50-1	1,2-Dichlorobenzene	ND	340	68	ug/kg
541-73-1	1,3-Dichlorobenzene	ND	340	68	ug/kg
106-46-7	1,4-Dichlorobenzene	ND	340	69	ug/kg
75-34-3	1,1-Dichloroethane	ND	340	110	ug/kg
107-06-2	1,2-Dichloroethane	ND	340	68	ug/kg
75-35-4	1,1-Dichloroethylene	ND	340	68	ug/kg
156-59-2	cis-1,2-Dichloroethylene	ND	340	82	ug/kg
156-60-5	trans-1,2-Dichloroethylene	ND	340	100	ug/kg
78-87-5	1,2-Dichloropropane	ND	340	110	ug/kg
10061-01-5	cis-1,3-Dichloropropene	ND	340	130	ug/kg
10061-02-6	trans-1,3-Dichloropropene	ND	340	68	ug/kg
100-41-4	Ethylbenzene	ND	340	74	ug/kg
76-13-1	Freon 113	ND	340	80	ug/kg
591-78-6	2-Hexanone	ND	1700	590	ug/kg
98-82-8	Isopropylbenzene	ND	340	96	ug/kg

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Method:

Project:

Report of Analysis

Client Sample ID: SB103 (6-7) Lab Sample ID: FA34302-6 Matrix:

SO - Soil

SW846 8260C SW846 5035

BMSMC, Building 5 Area, Humacao, PR

Date Sampled: 05/25/16 Date Received: 05/27/16

Percent Solids: 84.5

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
99-87-6	p-Isopropyltoluene	ND	340	68	ug/kg	
79-20-9	Methyl Acetate	ND	1700	580	ug/kg	
74-83-9	Methyl Bromide	ND	340	180	ug/kg	
74-87-3	Methyl Chloride	ND	340	160	ug/kg	
108-87-2	Methylcyclohexane	ND	340	68	ug/kg	
75-09-2	Methylene Chloride	ND	680	270	ug/kg	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	1700	730	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	ND	340	76	ug/kg	
100-42-5	Styrene	ND	340	68	ug/kg	
75-85-4	Tert-Amyl Alcohol	ND	3400	920	ug/kg	
75-65-0	Tert-Butyl Alcohol	ND	3400	930	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	340	150	ug/kg	
127-18-4	Tetrachloroethylene	ND	340	89	ug/kg	
109-99-9	Tetrahydrofuran	ND	680	250	ug/kg	
108-88-3	Toluene	ND	340	77	ug/kg	
87-61-6	1,2,3-Trichlorobenzene	ND	340	130	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	340	100	ug/kg	
71-55-6	1,1,1-Trichloroethane	ND	340	68	ug/kg	
79-00-5	1,1,2-Trichloroethane	ND	340	120	ug/kg	
79-01-6	Trichloroethylene	ND	340	80	ug/kg	
75-69-4	Trichlorofluoromethane	ND	340	130	ug/kg	
95-63-6	1,2,4-Trimethylbenzene	ND	340	68	ug/kg	
75-01-4	Vinyl Chloride	ND	340	110	ug/kg	
	m,p-Xylene	ND	680	120	ug/kg	
95-47-6	o-Xylene	ND	340	75	ug/kg	
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limit	s	
1868-53-7	Dibromofluoromethane	103%	108%	75-12	4%	
17060-07-0	1,2-Dichloroethane-D4	105%	122%	72-13	5%	
2037-26-5	Toluene-D8	98%	121%	75-12	6%	
460-00-4	4-Bromofluorobenzene	106%	29% ^b	71-13	3%	19

⁽b) Outside control limits due to matrix interference.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

Report of Analysis

By

EP

Page 1 of 2

Client Sample ID: MW-235 (5-6) Lab Sample ID: FA34302-7

Matrix: Method: SO - Soil

SW846 8260C SW846 5035

Date Sampled:

05/25/16 Date Received: 05/27/16

Percent Solids: 81.0

Project:

BMSMC, Building 5 Area, Humacao, PR

Analyzed

05/27/16

Analytical Batch Prep Batch

Run #1 Run #2

Initial Weight

Final Volume

05/27/16 12:54

Prep Date

Q

J

VY1168

5.30 g

File ID

Y28914.D

5.0 ml

DF

1

Run #1 Run #2

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units
67-64-1	Acetone	16.1	58	12	ug/kg
71-43-2	Benzene	ND	5.8	1.5	ug/kg
100-44-7	Benzyl Chloride	ND	5.8	1.6	ug/kg
74-97-5	Bromochloromethane	ND	5.8	1.3	ug/kg
75-27-4	Bromodichloromethane	ND	5.8	1.2	ug/kg
75-25-2	Bromoform	ND	5.8	1.2	ug/kg
78-93-3	2-Butanone (MEK)	ND	29	11	ug/kg
75-15-0	Carbon Disulfide	ND	5.8	1.2	ug/kg
56-23-5	Carbon Tetrachloride	ND	5.8	2.1	ug/kg
108-90-7	Chlorobenzene	ND	5.8	1.2	ug/kg
75-00-3	Chloroethane	ND	5.8	2.3	ug/kg
67-66-3	Chloroform	ND	5.8	1.4	ug/kg
110-82-7	Cyclohexane	ND	5.8	1.4	ug/kg
124-48-1	Dibromochloromethane	ND	5.8	1.2	ug/kg
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.8	2.6	ug/kg
106-93-4	1,2-Dibromoethane	ND	5.8	1.2	ug/kg
75-71-8	Dichlorodifluoromethane	ND	5.8	2.9	ug/kg
95-50-1	1,2-Dichlorobenzene	ND	5.8	1.2	ug/kg
541-73-1	1,3-Dichlorobenzene	ND	5.8	1.2	ug/kg
106-46-7	1,4-Dichlorobenzene	ND	5.8	1.2	ug/kg
75-34-3	1,1-Dichloroethane	ND	5.8	2.0	ug/kg
107-06-2	1,2-Dichloroethane	ND	5.8	1.2	ug/kg
75-35-4	1,1-Dichloroethylene	ND	5.8	1.2	ug/kg
156-59-2	cis-1,2-Dichloroethylene	ND	5.8	1.4	ug/kg
156-60-5	trans-1,2-Dichloroethylene	ND	5.8	1.8	ug/kg
78-87-5	1,2-Dichloropropane	ND	5.8	1.9	ug/kg
10061-01-5	cis-1,3-Dichloropropene	ND	5.8	2.2	ug/kg
10061-02-6	trans-1,3-Dichloropropene	ND	5.8	1.2	ug/kg
100-41-4	Ethylbenzene	ND	5.8	1.3	ug/kg
76-13-1	Freon 113	ND	5.8	1.4	ug/kg
591-78-6	2-Hexanone	ND	29	10	ug/kg
98-82-8	Isopropylbenzene	ND	5.8	1.6	ug/kg

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID: MW-235 (5-6) Lab Sample ID: FA34302-7

SO - Soil

Date Sampled: 05/25/16 Date Received:

Matrix: Method:

SW846 8260C SW846 5035

05/27/16 Percent Solids: 81.0

Project:

BMSMC, Building 5 Area, Humacao, PR

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
99-87-6	p-Isopropyltoluene	ND	5.8	1.2	ug/kg	
79-20-9	Methyl Acetate	ND	29	10	ug/kg	
74-83-9	Methyl Bromide	ND	5.8	3.0	ug/kg	
74-87-3	Methyl Chloride	ND	5.8	2.8	ug/kg	
108-87-2	Methylcyclohexane	ND	5.8	1.2	ug/kg	
75-09-2	Methylene Chloride a	8.2	12	4.7	ug/kg	JB
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	29	12	ug/kg	_
1634-04-4	Methyl Tert Butyl Ether	ND	5.8	1.3	ug/kg	
100-42-5	Styrene	ND	5.8	1.2	ug/kg	
75-85-4	Tert-Amyl Alcohol	ND	58	16	ug/kg	
75-65-0	Tert-Butyl Alcohol	ND	58	16	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	5.8	2.6	ug/kg	
127-18-4	Tetrachloroethylene	ND	5.8	1.5	ug/kg	
109-99-9	Tetrahydrofuran	ND	12	4.2	ug/kg	
108-88-3	Toluene	ND	5.8	1.3	ug/kg	
87-61-6	1,2,3-Trichlorobenzene	ND	5.8	2.3	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	5.8	1.7	ug/kg	
71-55-6	1,1,1-Trichloroethane	ND	5.8	1.2	ug/kg	
79-00-5	1,1,2-Trichloroethane	ND	5.8	2.1	ug/kg	
79-01-6	Trichloroethylene	ND	5.8	1.4	ug/kg	
75-69-4	Trichlorofluoromethane	ND	5.8	2.2	ug/kg	
95-63-6	1,2,4-Trimethylbenzene	ND	5.8	1.2	ug/kg	
75-01-4	Vinyl Chloride	ND	5.8	1.9	ug/kg	
	m,p-Xylene	ND	12	2.0	ug/kg	
95-47-6	o-Xylene	ND	5.8	1.3	ug/kg	

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	100% 99% 112% 107%		75-124% 72-135% 75-126% 71-133%

(a) Suspected laboratory contaminant.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

By

SP

Page 1 of 2

Client Sample ID: Lab Sample ID:

BPEB-29 FA34302-8

Matrix:

AQ - Equipment Blank

DF

1

Date Sampled: Date Received:

05/25/16 05/27/16

Method:

SW846 8260C

Percent Solids:

Project:

BMSMC, Building 5 Area, Humacao, PR

Prep Batch

Analytical Batch

Run #2

Run #1 J0976896.D Analyzed 05/28/16

Prep Date n/a

n/a

Q

VJ5319

Purge Volume

File ID

Run #1 Run #2 $5.0 \, \mathrm{ml}$

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units
67-64-1	Acetone	ND	25	10	ug/l
71-43-2	Benzene	ND	1.0	0.20	ug/l
100-44-7	Benzyl Chloride	ND	2.0	0.44	ug/l
74-97-5	Bromochloromethane	ND	1.0	0.42	ug/l
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l
75-25-2	Bromoform	ND	1.0	0.46	ug/l
78-93-3	2-Butanone (MEK)	ND	5.0	2.6	ug/l
75-15-0	Carbon Disulfide	ND	2.0	0.23	ug/l
56-23-5	Carbon Tetrachloride	ND	1.0	0.30	ug/l
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l
75-00-3	Chloroethane	ND	2.0	0.63	ug/l
67-66-3	Chloroform	ND	1.0	0.30	ug/l
110-82-7	Cyclohexane	ND	1.0	0.26	ug/l
124-48-1	Dibromochloromethane	ND	1.0	0.26	ug/l
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	0.81	ug/l
106-93-4	1,2-Dibromoethane	ND	2.0	0.33	ug/l
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.27	ug/l
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.24	ug/l
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.39	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	0.26	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	0.28	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	0.22	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.31	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.33	ug/l
78-87-5	1,2-Dichloropropane	ND	1.0	0.34	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.26	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.25	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.25	ug/l
76-13-1	Freon 113	ND	1.0	0.32	ug/l
591-78-6	2-Hexanone	ND	10	2.0	ug/l
98-82-8	Isopropylbenzene	ND	1.0	0.33	ug/l

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Method:

Project:

Report of Analysis

Client Sample ID: BPEB-29
Lab Sample ID: FA34302-8
Matrix: AQ - Equipm

AQ - Equipment Blank SW846 8260C

BMSMC, Building 5 Area, Humacao, PR

Date Sampled: 05/25/16 Date Received: 05/27/16

Percent Solids: n/a

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
99-87-6	p-Isopropyltoluene	ND	1.0	0.28	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	
74-83-9	Methyl Bromide	ND	2.0	0.50	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
108-87-2	Methylcyclohexane	ND	1.0	0.23	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.4	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.20	ug/l	
100-42-5	Styrene	ND	1.0	0.24	ug/l	
75-85-4	Tert-Amyl Alcohol	ND	20	6.0	ug/l	
75-65-0	Tert-Butyl Alcohol	ND	20	9.1	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.33	ug/i	
127-18-4	Tetrachloroethylene	ND	1.0	0.30	ug/l	
109-99-9	Tetrahydrofuran	ND	5.0	1.4	ug/l	
108-88-3	Toluene	ND	1.0	0.20	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.51	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.20	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.37	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.27	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.50	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	1.0	0.20	ug/l	
75-01-4	Vinyl Chloride	ND	1.0	0.31	ug/l	
	m,p-Xylene	ND	2.0	0.30	ug/l	
95-47-6	o-Xylene	ND	1.0	0.26	ug/l	
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	102%		83-11	18%	
17060-07-0	1,2-Dichloroethane-D4	102%		79-17	25%	
2037-26-5	Toluene-D8	102%		85-13	12%	100
460-00-4	4-Bromofluorobenzene	106%		83-13	18%	1
						1 9

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 2

Client Sample ID: SB103-GWD Lab Sample ID:

FA34302-9

Date Sampled: Date Received:

05/25/16 05/27/16

Matrix: Method: AQ - Ground Water SW846 8260C

Percent Solids:

Project:

BMSMC, Building 5 Area, Humacao, PR

05/28/16

Analytical Batch Prep Batch

Run #1

Run #2

J0976897.D 1

DF

Analyzed By SP Prep Date n/a

n/a

VJ5319

Purge Volume 5.0 ml

File ID

Run #1 Run #2

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	10	ug/l	
71-43-2	Benzene	ND	1.0	0.20	ug/l	
100-44-7	Benzyl Chloride	ND	2.0	0.44	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.42	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l	
75-25-2	Bromoform	ND	1.0	0.46	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.6	ug/l	
75-15-0	Carbon Disulfide	ND	2.0	0.23	ug/l	
56-23-5	Carbon Tetrachloride	ND	1.0	0.30	ug/l	
108-90-7	Chlorobenzene	0.79	1.0	0.20	ug/l	J
75-00-3	Chloroethane	ND	2.0	0.63	ug/l	
67-66-3	Chloroform	ND	1.0	0.30	ug/l	
110-82-7	Cyclohexane	ND	1.0	0.26	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.26	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	0.81	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.33	ug/i	
75-71-8	Dichlorodifluoromethane	20.2	2.0	0.50	ug/l	
95-50-1	1,2-Dichlorobenzene	2.4	1.0	0.27	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	0.1	0.24	ug/l	
106-46-7	1,4-Dichlorobenzene	0.51	1.0	0.39	ug/l	J
75-34-3	1,1-Dichloroethane	ND	1.0	0.26	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.28	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.22	ug/l	
156-59-2	cis-1,2-Dichloroethylene	0.65	1.0	0.31	ug/l	J
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.33	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.34	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.26	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.25	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.25	ug/l	19
76-13-1	Freon 113	ND	1.0	0.32	ug/l	
591-78-6	2-Нехапопе	ND	10	2.0	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.33	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value LICEN

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

fael Infants Méndez

Method:

Project:

Report of Analysis

Client Sample ID: SB103-GWD Lab Sample ID: FA34302-9 Matrix: AQ - Ground V

AQ - Ground Water SW846 8260C

BMSMC, Building 5 Area, Humacao, PR

Date Sampled: 05/25/16 Date Received: 05/27/16

Percent Solids: n/a

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
99-87-6	p-Isopropyltoluene	ND	1.0	0.28	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	
74-83-9	Methyl Bromide	ND	2.0	0.50	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
108-87-2	Methylcyclohexane	ND	1.0	0.23	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.4	ng/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.20	ug/l	
100-42-5	Styrene	ND	1.0	0.24	ug/l	
75-85-4	Tert-Amyl Alcohol	ND	20	6.0	ug/l	
75-65-0	Tert-Butyl Alcohol	ND	20	9.1	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.33	ug/l	
127-18-4	Tetrachloroethylene	0.47	1.0	0.30	ug/l	J
109-99-9	Tetrahydrofuran	ND	5.0	1.4	ug/l	
108-88-3	Toluene	ND	1.0	0.20	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.51	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.20	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.37	ug/l	
79-01-6	Trichloroethylene	0.62	1.0	0.27	ug/l	J
75-69-4	Trichlorofluoromethane	ND	2.0	0.50	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	1.0	0.20	ug/l	
75-01-4	Vinyl Chloride	ND	1.0	0.31	ug/l	
	m,p-Xylene	ND	2.0	0.30	ug/l	
95-47-6	o-Xylene	ND	1.0	0.26	ug/l	
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	103%		83-1	18%	
17060-07-0	1,2-Dichloroethane-D4	103%		79-1	25%	
2037-26-5	Toluene-D8	101%		85-1	12%	
460-00-4	4-Bromofluorobenzene	102%		83-1	18%	13

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 2

Client Sample ID: **SB103-GWS** Lab Sample ID: FA34302-10

Matrix: AQ - Ground Water Method:

SW846 8260C

BMSMC, Building 5 Area, Humacao, PR

05/25/16 Date Sampled:

Date Received: 05/27/16

Percent Solids:

File ID DF Analyzed Prep Batch **Analytical Batch** By Prep Date SP Run #1 J0976898.D 1 05/28/16 VJ5319 n/a n/a

Run #2

Project:

Purge Volume

Run #1 $5.0 \, ml$

Run #2

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	10	ug/l	
71-43-2	Benzene	ND	1.0	0.20	ug/l	
100-44-7	Benzyl Chloride	ND	2.0	0.44	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.42	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l	
75-25-2	Bromoform	ND	1.0	0.46	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.6	ug/l	
75-15-0	Carbon Disulfide	ND	2.0	0.23	ug/l	
56-23-5	Carbon Tetrachloride	ND	1.0	0.30	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	2.0	0.63	ug/l	
67-66-3	Chloroform	ND	1.0	0.30	ug/l	
110-82-7	Cyclohexane	ND	1.0	0.26	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.26	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	0.81	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.33	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.27	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.24	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.39	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.26	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.28	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.22	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.31	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.33	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.34	ug/l	3
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.26	ug/l	131
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.25	ug/l	3
100-41-4	Ethylbenzene	ND	1.0	0.25	ug/l	10.3
76-13-1	Freon 113	ND	1.0	0.32	ug/l	1-
591-78-6	2-Hexanone	ND	10	2.0	ug/l	13
98-82-8	Isopropylbenzene	ND	1.0	0.33	ug/l	10

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Method:

Project:

Report of Analysis

Page 2 of 2

Client Sample ID: SB103-GWS Lab Sample ID: FA34302-10 Matrix:

AQ - Ground Water

SW846 8260C

BMSMC, Building 5 Area, Humacao, PR

Date Sampled: 05/25/16 Date Received: 05/27/16

Percent Solids: n/a

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
99-87-6	p-Isopropyltoluene	ND	1.0	0.28	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	
74-83-9	Methyl Bromide	ND	2.0	0.50	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
108-87-2	Methylcyclohexane	ND	1.0	0.23	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.4	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.20	ug/l	
100-42-5	Styrene	ND	1.0	0.24	ug/l	
75-85-4	Tert-Amyl Alcohol	ND	20	6.0	ug/l	
75-65-0	Tert-Butyl Alcohol	ND	20	9.1	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.33	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.30	ug/l	
109-99-9	Tetrahydrofuran	ND	5.0	1.4	ug/l	
108-88-3	Toluene	ND	1.0	0.20	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.51	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.20	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.37	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.27	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.50	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	1.0	0.20	ug/i	
75-01-4	Vinyl Chloride	ND	1.0	0.31	ug/l	
	m,p-Xylene	ND	2.0	0.30	ug/I	
95-47-6	o-Xylene	ND	1.0	0.26	ug/l	
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	103%		83-11	18%	
17060-07-0	1,2-Dichloroethane-D4	103%		79-12	25%	
2037-26-5	Toluene-D8	99%		85-11	2%	/
460-00-4	4-Bromofluorobenzene	105%		83-11	8%	12
						120

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 2

Client Sample ID: Lab Sample ID:

TB052616 FA34302-11

Date Sampled:

05/25/16

Matrix:

AQ - Trip Blank Water

Date Received: 05/27/16

Q

Method:

SW846 8260C

Percent Solids: n/a

Project:

BMSMC, Building 5 Area, Humacao, PR

Run #1

DF 1

Analyzed By SP 05/28/16

Prep Date

n/a

Prep Batch n/a

Analytical Batch VJ5319

Run #2

Purge Volume

 $5.0 \, ml$

File ID

J0976899.D

Run #1 Run #2

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Unit
67-64-1	Acetone	ND	25	10	ug/l
71-43-2	Benzene	ND	1.0	0.20	ug/l
100-44-7	Benzyl Chloride	ND	2.0	0.44	ug/l
74-97-5	Bromochloromethane	ND	1.0	0.42	ug/l
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l
75-25-2	Bromoform	ND	1.0	0.46	ug/l
78-93-3	2-Butanone (MEK)	ND	5.0	2.6	ug/l
75-15-0	Carbon Disulfide	ND	2.0	0.23	ug/l
56-23-5	Carbon Tetrachloride	ND	1.0	0.30	ug/l
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l
75-00-3	Chloroethane	ND	2.0	0.63	ug/l
67-66-3	Chloroform	ND	1.0	0.30	ug/l
110-82-7	Cyclohexane	ND	1.0	0.26	ug/l
124-48-1	Dibromochloromethane	ND	1.0	0.26	ug/l
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	0.81	ug/l
106-93-4	1,2-Dibromoethane	ND	2.0	0.33	ug/l
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.27	ug/i
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.24	ug/l
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.39	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	0.26	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	0.28	ug/l
75-35-4	1, I-Dichloroethylene	ND	1.0	0.22	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.31	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.33	ug/l
78-87-5	1,2-Dichloropropane	ND	1,0	0.34	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.26	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.25	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.25	ug/l
76-13-1	Freon 113	ND	1.0	0.32	ug/l
591-78-6	2-Hexanone	ND	10	2.0	ug/l
98-82-8	Isopropylbenzene	ND	1.0	0.33	ug/l

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 2 of 2

Client Sample ID:

TB052616

Lab Sample ID:

FA34302-11

Matrix: Method: AQ - Trip Blank Water

Project:

SW846 8260C

BMSMC, Building 5 Area, Humacao, PR

Date Sampled:

Q

05/25/16 Date Received: 05/27/16

Percent Solids: n/a

VOA TCL List (SOM02.0)

CAS No.	No. Compound		RL	MDL	Units	
99-87-6	p-Isopropyltoluene	ND	1.0	0.28	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	
74-83-9	Methyl Bromide	ND	2.0	0.50	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
108-87-2	Methylcyclohexane	ND	1.0	0.23	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.4	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.20	ug/l	
100-42-5	Styrene	ND	1.0	0.24	ug/l	
75-85-4	Tert-Amyl Alcohol	ND	20	6.0	ug/l	
75-65-0	Tert-Butyl Alcohol	ND	20	9.1	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.33	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.30	ug/l	
109-99-9	Tetrahydrofuran	ND	5.0	1.4	ug/l	
108-88-3	Toluene	ND	1.0	0.20	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.51	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.20	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.37	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.27	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.50	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	1.0	0.20	ug/l	
75-01-4	Vinyl Chloride	ND	1.0	0.31	ug/l	
	m,p-Xylene	ND	2.0	0.30	ug/l	
95-47-6	o-Xylene	ND	1.0	0.26	ug/l	
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	102%		83-11	18%	
17060-07-0	1,2-Dichloroethane-D4	102%		79-17	25%	
2037-26-5	Toluene-D8	102%		85-13	12%	
460-00-4	4-Bromofluorobenzene	106%		83-13	18%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = Indicates \ analyte \ found \ in \ associated \ method \ blank$

SGS ACCUTEST	FL 30	OF CUST	4405 Vinciand	FA39	P055#	PAGE 1	
Coffeegum 11111	Ms Release	Accepted	neal		12.00		Matrix Codes
	MS Release	/1>>C\$>/1	TENT	\$200C			CMY - DANNING Worse DW - Circums Wester
2700 West chester		lika salamatan (Kaliber	ed Brown Mayers (pp)				WW - Water SW - Burtons Weter SC - Bell
Purchase NY "Hum	9000 PR	Industry Plants					III Matte SED-Andaren
Terry Taylor Email	5=	rbet Aderson		Method			01-06 (10-00-04-04- AR-Ar
914-251-0400	Croter #	ly .	Elem Zap	131			BCIL - Other Sold WP - Was
	, Am	milian		 ≥			FS-Feet Bank CD-Contrast Stock RS-Pines Stock
N. R. Vera, T. Taylor, D. Ludstand			harden dans at the second	- 1			TS-Trp Black
			I R S W B R S	10			-
Fletd 10 / Point of Collection HECHO Wald	Dama Types		3 9 9 N K M				LAR USE DIRLY
2 EB05252016		T SW 3		X	+++		
3 BP EB-28	05/25/16 1548 N	····				├─┼─┼	
9 SB103 (2.5-3.5)	25/26/16 1030 T	Y 30 4	1 1				
5 5B103D (2.5-3.5)	ostulle was T	7 50 3	1 9	2			
6 SB103 (G-7)	05/24/16 1055 T	7 50 4	1 3	X			
7 MW-235(5-6)	05/14/16 1152 N	IR 50 4	1 1 3	X.			
9 BPEB-29 9 SB183-GWD	05/24/K /330 T		3	X			
10 5A103 - 6WS		7 6W 3 7		X	+++	├─┤┈╅═ ┼┈┼	+
11 18 052616	05/15/16 0800	78 2		121	 		
	310112 000						
Turns mural Time (Business days)	Annahus Pille / Burns	Communication *A** (Lore	edingrable Information out 1) MYARP Code	4		ments / Special Instructions	
The second confer Sell Sept ples	lā	Commercial W (Lon	rel 2) HYARP Com	9070 IA		Tetrahydrafu	
3 Day 808H	<u></u>	ES FOREIT (Construit)	CDD Formet		· Isopropyl-to	bone, Beitzyl ch	lorde,
Star 10 Standards Day For Sell Sept Sell	<u> </u>	Commental "C" AU Date of Remon 0	Other			nethyl banzan	e_1
CHINITIAN TA COM ANALYSIS AND ANALYSIS ANALYSIS AND ANALY		romagogi "A" = Passalis Cirly, J (Included = Restalis + CJC ()	Compared To a Remain + DC S		TOTAL COM	Chloride	Laboratory
	mple Custody must be decomed	and Support such time some		italing courier deli-			475
10 N 100 05/16/16 /700	Fed EX		FX			Men	5/27/16
Terrepolated By State, party	Scoolinal Syr.		eling-rational Dys		P-m 20-m /	1	
5	5	•		Marie Pres			Contro Tompo 4. 2
1782	04		-	-			

FA34302: Chain of Custody Page 1 of 3

Report of Analysis

By

EP

Page 1 of 2

Client Sample ID: Lab Sample ID:

RA7 (4-5) FA34301-1

Date Sampled:

Matrix:

SO - Soil

Date Received:

Q

J

05/25/16 05/27/16

Method:

SW846 8260C SW846 5035

Percent Solids: 79.6

Project:

BMSMC, Building 5 Area, Humacao, PR

Run #1 a

DF Analyzed 05/27/16 1

Prep Date 05/27/16 11:20 n/a

Analytical Batch Prep Batch VY1168

Run #2

Final Volume

Initial Weight 5.33 g

File ID

Y28908.D

 $5.0 \, ml$

Run #1 Run #2

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units
67-64-1	Acetone	15.0	59	12	ug/kg
71-43-2	Benzene	ND	5.9	1.5	ug/kg
100-44-7	Benzyl Chloride	ND	5.9	1.6	ug/kg
74-97-5	Bromochloromethane	ND	5.9	1.3	ug/kg
75-27-4	Bromodichloromethane	ND	5.9	1.2	ug/kg
75-25-2	Bromoform	ND	5.9	1.2	ug/kg
78-93-3	2-Butanone (MEK)	ND	29	11	ug/kg
75-15-0	Carbon Disulfide	ND	5.9	1.2	ug/kg
56-23-5	Carbon Tetrachloride	ND	5.9	2.1	ug/kg
108-90-7	Chlorobenzene	ND	5.9	1.2	ug/kg
75-00-3	Chloroethane	ND	5.9	2.4	ug/kg
67-66-3	Chloroform	ND	5.9	1.4	ug/kg
110-82-7	Cyclohexane	ND	5.9	1.4	ug/kg
124-48-1	Dibromochloromethane	ND	5.9	1.2	ug/kg
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.9	2.6	ug/kg
106-93-4	1,2-Dibromoethane	ND	5.9	1.2	ug/kg
75-71-8	Dichlorodifluoromethane	ND	5.9	2.9	ug/kg
95-50-1	1,2-Dichlorobenzene	ND	5.9	1.2	ug/kg
541-73-1	1,3-Dichlorobenzene	ND	5.9	1.2	ug/kg
106-46-7	1,4-Dichlorobenzene	ND	5.9	1.2	ug/kg
75-34-3	1,1-Dichloroethane	ND	5.9	2.0	ug/kg
107-06-2	1,2-Dichloroethane	ND	5.9	1.2	ug/kg
75-35-4	1,1-Dichloroethylene	ND	5.9	1.2	ug/kg
156-59-2	cis-1,2-Dichloroethylene	ND	5.9	1.4	ug/kg
156-60-5	trans-1,2-Dichloroethylene	ND	5.9	1.8	ug/kg
78-87-5	1,2-Dichloropropane	ND	5.9	1.9	ug/kg
10061-01-5	cis-1,3-Dichloropropene	ND	5.9	2.2	ug/kg
10061-02-6	trans-1,3-Dichloropropene	ND	5.9	1.2	ug/kg
100-41-4	Ethylbenzene	ND	5.9	1.3	ug/kg
76-13-1	Freon 113	ND	5.9	1.4	ug/kg
591-78-6	2-Hexanone	ND	29	10	ug/kg
98-82-8	Isopropylbenzene	ND	5.9	1.7	ug/kg

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Method:

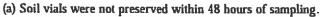
Project:

Report of Analysis

Client Sample ID: RA7 (4-5) Lab Sample ID: FA34301-1 Matrix:

SO - Soil

SW846 8260C SW846 5035


BMSMC, Building 5 Area, Humacao, PR

Date Sampled: 05/25/16 Date Received: 05/27/16

Percent Solids: 79.6

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
99-87-6	p-Isopropyltoluene	ND	5.9	1.2	ug/kg	
79-20-9	Methyl Acetate	ND	29	10	ug/kg	
74-83-9	Methyl Bromide	ND	5.9	3.0	ug/kg	
74-87-3	Methyl Chloride	ND	5.9	2.8	ug/kg	
108-87-2	Methylcyclohexane	ND	5.9	1.2	ug/kg	
75-09-2	Methylene Chloride b	16.4	12	4.7	ug/kg	В
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	29	13	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	2.7	5.9	1.3	ug/kg	J
100-42-5	Styrene	ND	5.9	1.2	ug/kg	_
75-85-4	Tert-Amyl Alcohol	ND	59	16	ug/kg	
75-65-0	Tert-Butyl Alcohol	104	59	16	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	5.9	2.6	ug/kg	
127-18-4	Tetrachloroethylene	ND	5.9	1.5	ug/kg	
109-99-9	Tetrahydrofuran	ND	12	4.3	ug/kg	
108-88-3	Toluene	ND	5.9	1.3	ug/kg	
87-61-6	1,2,3-Trichlorobenzene	ND	5.9	2.3	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	5.9	1.7	ug/kg	
71-55-6	1,1,1-Trichloroethane	ND	5.9	1.2	ug/kg	
79-00-5	1,1,2-Trichloroethane	ND	5.9	2.1	ug/kg	
79-01-6	Trichloroethylene	ND	5.9	1.4	ug/kg	
75-69-4	Trichlorofluoromethane	ND	5.9	2.2	ug/kg	
95-63-6	1,2,4-Trimethylbenzene	ND	5.9	1.2	ug/kg	
75-01-4	Vinyl Chloride	ND	5.9	2.0	ug/kg	
	m,p-Xylene	ND	12	2.1	ug/kg	
95-47-6	o-Xylene	ND	5.9	1.3	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	tg	
1868-53-7	Dibromofluoromethane	99%		75-12	24%	
17060-07-0	1,2-Dichloroethane-D4	108%		72-13	35%	
2037-26-5	Toluene-D8	102%		75-12	. 6%	
460-00-4	4-Bromofluorobenzene	119%		71-13	13%	

(b) Suspected laboratory contaminant.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

By

EP

Prop Date

Page 1 of 2

MW-22S (2.7-3.7) Client Sample ID: Lab Sample ID:

Matrix:

FA34301-2 SO - Soil

SW846 8260C SW846 5035

Date Sampled: Date Received:

05/25/16 05/27/16

Method: Project:

Percent Solids: 83.0

BMSMC, Building 5 Area, Humacao, PR

Analyzed

05/27/16

Analytical Batch Prep Batch 05/27/16 11:40 VY1168

Run #1 a Run #2

Final Volume

Initial Weight 5.91 g

5.0 ml

DF

1

Run #1 Run #2

VOA TCL List (SOM02.0)

File ID

Y28909.D

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	51	10	ug/kg	
71-43-2	Benzene	ND	5.1	1.3	ug/kg	
100-44-7	Benzyl Chloride	ND	5.1	1.4	ug/kg	
74-97-5	Bromochloromethane	ND	5.1	1.1	ug/kg	
75-27-4	Bromodichloromethane	ND	5.1	1.0	ug/kg	
75-25-2	Bromoform	ND	5.1	1.0	ug/kg	
78-93-3	2-Butanone (MEK)	ND	25	9.3	ug/kg	
75-15-0	Carbon Disulfide	ND	5.1	1.0	ug/kg	
56-23-5	Carbon Tetrachloride	ND	5.1	1.8	ug/kg	
108-90-7	Chlorobenzene	ND	5.1	1.0	ug/kg	
75-00-3	Chloroethane	ND	5.1	2.0	ug/kg	
67-66-3	Chloroform	ND	5.1	1.2	ug/kg	
110-82-7	Cyclohexane	ND	5.1	1.2	ug/kg	
124-48-1	Dibromochloromethane	ND	5.1	1.0	ug/kg	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.1	2.3	ug/kg	
106-93-4	1,2-Dibromoethane	ND	5.1	1.0	ug/kg	
75-71-8	Dichlorodifluoromethane	ND	5.1	2.5	ug/kg	
95-50-1	1,2-Dichlorobenzene	ND	5.1	1.0	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	5.1	1.0	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	5.1	1.0	ug/kg	
75-34-3	1,1-Dichloroethane	ND	5.1	1.7	ug/kg	
107-06-2	1,2-Dichloroethane	ND	5.1	1.0	ug/kg	
75-35-4	1,1-Dichloroethylene	ND	5.1	1.0	ug/kg	
156-59-2	cis-1,2-Dichloroethylene	ND	5.1	1.2	ug/kg	
156-60-5	trans-1,2-Dichloroethylene	ND	5.1	1.5	ug/kg	
78-87-5	1,2-Dichloropropane	ND	5.1	1.6	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	5.1	1.9	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	5.1	1.0	ug/kg	
100-41-4	Ethylbenzene	ND	5.1	1.1	ug/kg	
76-13-1	Freon 113	ND	5.1	1.2	ug/kg	
591-78-6	2-Hexanone	ND	25	8.9	ug/kg	
98-82-8	Isopropylbenzene	ND	5.1	1.4	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E - Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

| Client Sample ID: MW-22S (2.7-3.7) | Lab Sample ID: FA34301-2

Matrix: Method:

Project:

SO - Soil

SW846 8260C SW846 5035

BMSMC, Building 5 Area, Humacao, PR

Date Sampled: 05/25/16 Date Received: 05/27/16

Percent Solids: 83.0

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
99-87-6	p-Isopropyltoluene	ND	5.1	1.0	ug/kg	
79-20-9	Methyl Acetate	ND	25	8.7	ug/kg	
74-83-9	Methyl Bromide	ND	5.1	2.6	ug/kg	
74-87-3	Methyl Chloride	ND	5.1	2.4	ug/kg	
108-87-2	Methylcyclohexane	ND	5.1	1.0	ug/kg	
75-09-2	Methylene Chloride ^b	6.2	10	4.1	ug/kg	JB
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	25	11	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	ND	5.1	1.1	ug/kg	
100-42-5	Styrene	ND	5.1	1.0	ug/kg	
75-85-4	Tert-Amyl Alcohol	ND	51	14	ug/kg	
75-65-0	Tert-Butyl Alcohol	ND	51	14	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	5.1	2.3	ug/kg	
127-18-4	Tetrachloroethylene	ND	5.1	1.3	ug/kg	
109-99-9	Tetrahydrofuran	ND	10	3.7	ug/kg	
108-88-3	Toluene	ND	5.1	1.2	ug/kg	
87-61-6	1,2,3-Trichlorobenzene	ND	5.1	2.0	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	5.1	1.5	ug/kg	
71-55-6	1,1,1-Trichloroethane	ND	5.1	1.0	ug/kg	
79-00-5	1,1,2-Trichloroethane	ND	5.1	1.8	ug/kg	
79-01-6	Trichloroethylene	ND	5.1	1.2	ug/kg	
75-69-4	Trichlorofluoromethane	ND	5.1	1.9	ug/kg	
95-63-6	1,2,4-Trimethylbenzene	ND	5.1	1.0	ug/kg	
75-01-4	Vinyl Chloride	ND	5.1	1.7	ug/kg	
	m,p-Xylene	ND	10	1.8	ug/kg	
95-47-6	o-Xylene	ND	5.1	1.1	ug/kg	
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limi	its	

	July 100014 100	ZCLLIII I	Kum 2	Limite
1868-53-7 17060-07-0	Dibromofluoromethane 1,2-Dichloroethane-D4	95% 127%		75-124% 72-135%
2037-26-5	Toluene-D8	111%		75-126%
460-00-4	4-Bromofluorobenzene	101%		71-133%

(b) Suspected laboratory contaminant.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 2

Client Sample ID: RA7-GWD Lab Sample ID: FA34301-3 Matrix:

AQ - Ground Water SW846 8260C

Date Sampled: Date Received:

05/25/16 05/27/16

Method: Project:

BMSMC, Building 5 Area, Humacao, PR

Percent Solida: n/a

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	J0976892.D	1	05/28/16	SP	n/a	n/a	VJ5319
Run #2	J0976916.D	20	05/31/16	DP	n/a	n/a	VJ5322

1	Purge Volume
Run #1	5.0 ml
Dun #2	5.0 ml

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	10	ug/l	
71-43-2	Benzene	0.21	1.0	0.20	ug/l	J
100-44-7	Benzyl Chloride	ND	2.0	0.44	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.42	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l	
75-25-2	Bromoform	ND	1.0	0.46	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.6	ug/l	
75-15-0	Carbon Disulfide	0.88	2.0	0.23	ug/l	J
56-23-5	Carbon Tetrachloride	ND	1.0	0.30	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	2.0	0.63	ug/l	
67-66-3	Chloroform	0.34	1.0	0.30	ug/l	J
110-82-7	Cyclohexane	7.2	1.0	0.26	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.26	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	0.81	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.33	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.27	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.24	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.39	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.26	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.28	ug/l	40
75-35-4	1,1-Dichloroethylene	ND	1.0	0.22	ug/l	SAF MOCHOO OF SEE
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.31	ug/l	SOCIALIO DE
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.33	ug/l	4 9 4
78-87-5	1,2-Dichloropropane	ND	1.0	0.34	ug/l	dael Infimie Méndez
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.26	ug/l	Méndez 8
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.25	ug/l	IC # 1888 /8
100-41-4	Ethylbenzene	ND	1.0	0.25	ug/l	GreVeffan in "
76-13-1	Freon 113	ND	1.0	0.32	ug/l	Up S
591-78-6	2-Hexanone	ND	10	2.0	ug/l	CO LICENCIAGO
98-82-8	Isopropylbenzene	0.79	1.0	0.33	ug/l	1

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E - Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 2 of 2

Client Sample ID: **RA7-GWD** Lab Sample ID: FA34301-3

AQ - Ground Water SW846 8260C

Date Sampled: Date Received:

05/25/16 05/27/16

Method: Project:

Matrix:

BMSMC, Building 5 Area, Humacao, PR

Percent Solids:

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
99-87-6	p-Isopropyltoluene	ND	1.0	0.28	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	
74-83-9	Methyl Bromide	ND	2.0	0.50	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
108-87-2	Methylcyclohexane	ND	1.0	0.23	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.4	ug/l	
1634-04-4	Methyl Tert Butyl Ether	67.9	1.0	0.20	ug/l	
100-42-5	Styrene	ND	1.0	0.24	ug/l	
75-85-4	Tert-Amyl Alcohol	ND	20	6.0	ug/l	
75-65-0	Tert-Butyl Alcohol	1740 a	400	180	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.33	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.30	ug/l	
109-99-9	Tetrahydrofuran	4.9	5.0	1.4	ug/ì	J
108-88-3	Toluene	ND	1.0	0.20	ug/l	_
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.51	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.20	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.37	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.27	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.50	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	1.0	0.20	ug/l	
75-01-4	Vinyl Chloride	ND	1.0	0.31	ug/l	
	m,p-Xylene	ND	2.0	0.30	ug/l	
95-47-6	o-Xylene	ND	1.0	0.26	ug/l	
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	100%	103%	83-11	18%	
17060-07-0	1,2-Dichloroethane-D4	101%	103%	79-13	25%	1
2037-26-5	Toluene-D8	102%	101%	85-11	12%	1
460-00-4	4-Bromofluorobenzene	104%	103%	83-11	18%	/ 8

⁽a) Result is from Run# 2

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 2

Client Sample ID: TB052516

Lab Sample ID: FA34301-4

Matrix: Method:

Project:

AQ - Trip Blank Water

SW846 8260C

BMSMC, Building 5 Area, Humacao, PR

Date Sampled: 05/13/16

Date Received: 05/27/16

Q

Percent Solids: n/a

File ID DF Analyzed By **Analytical Batch** Prep Date Prep Batch Run #1 a SP J0976891.D 1 05/28/16 n/a VJ5319 n/a

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units
67-64-1	Асетопе	ND	25	10	ug/l
71-43-2	Benzene	ND	1.0	0.20	ug/l
100-44-7	Benzyl Chloride	ND	2.0	0.44	ug/l
74-97-5	Bromochloromethane	ND	1.0	0.42	ug/l
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l
75-25-2	Bromoform	ND	1.0	0.46	ug/l
78-93-3	2-Butanone (MEK)	ND	5.0	2.6	ug/l
75-15-0	Carbon Disulfide	ND	2.0	0.23	ug/l
56-23-5	Carbon Tetrachloride	ND	1.0	0.30	ug/l
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l
75-00-3	Chloroethane	ND	2.0	0.63	ug/l
67-66-3	Chloroform	ND	1.0	0.30	ug/l
110-82-7	Cyclohexane	ND	1.0	0.26	ug/l
124-48-1	Dibromochloromethane	ND	1.0	0.26	ug/l
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	0.81	ug/l
106-93-4	1,2-Dibromoethane	ND	2.0	0.33	ug/l
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.27	ug/l
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.24	ug/l
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.39	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	0.26	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	0.28	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	0.22	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.31	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.33	ug/l
78-87-5	1,2-Dichloropropane	ND	1.0	0.34	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.26	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.25	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.25	ug/l
76-13-1	Freon 113	ND	1.0	0.32	ug/l
591-78-6	2-Hexanone	ND	10	2.0	ug/l
98-82-8	Isopropylbenzene	ND	1.0	0.33	ug/l

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 2 of 2

Client Sample ID: TB052516

Lab Sample ID: FA34301-4

Matrix:

AQ - Trip Blank Water

Date Sampled: Date Received:

05/13/16 05/27/16

Method:

SW846 8260C

Percent Solids:

05/27/1

Project:

BMSMC, Building 5 Area, Humacao, PR

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
99-87-6	p-Isopropyltoluene	ND	1.0	0.28	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	
74-83-9	Methyl Bromide	ND	2.0	0.50	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
108-87-2	Methylcyclohexane	ND	1.0	0.23	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.4	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.20	ug/l	
100-42-5	Styrene	ND	1.0	0.24	ug/l	
75-85-4	Tert-Amyl Alcohol	ND	20	6.0	ug/l	
75-65-0	Tert-Butyl Alcohol	ND	20	9.1	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.33	ug/i	
127-18-4	Tetrachloroethylene	ND	1.0	0.30	ug/l	
109-99-9	Tetrahydrofuran	ND	5.0	1.4	ug/l	
108-88-3	Toluene	ND	1.0	0.20	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.51	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.20	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.37	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.27	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.50	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	1.0	0.20	ug/l	
75-01-4	Vinyl Chloride	ND	1.0	0.31	ug/l	
	m,p-Xylene	ND	2.0	0.30	ug/l	
95-47-6	o-Xylene	ND	1.0	0.26	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	101%		83-11	18%	
17060-07-0	1,2-Dichloroethane-D4	100%		79-17	25%	
2037-26-5	Toluene-D8	102%		85-11	12%	
460-00-4	4-Bromofluorobenzene	108%		83-13	18%	

(a) Sample analyzed beyond hold time; reported results are considered minimum values.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 2

Matrix Spike/Matrix Spike Duplicate Summary

Job Number:

FA34301

Account: AMANYWP Anderson, Mulholland & Associates

Project:

BMSMC, Building 5 Area, Humacao, PR

The QC reported here applies to the following samples:

Method: SW846 8260C

FA34301-1, FA34301-2

CAS No.	Compound	FA3430 ug/kg	1-1 Q	Spîke ug/kg	MS ug/kg	MS %	Spike ug/kg	MSD ug/kg	MSD %	RPD	Limits Rcc/RPD
67-64-1	Acetone	15.0	ī	288	151	47*	291	170	53*	12	61-152/27
71-43-2	Benzene	ND	J	57.6	52.5	91	58.3	46.8	80	11	76-126/26
100-44-7	Benzyl Chloride	ND		57.6	44.8	78	58.3	41.6	71	7	
74-97-5	Bromochloromethane	ND		57.6	50.1	87	58.3	45.7	78	9	65-126/31 77-120/24
75-27-4	Bromodichloromethane	ND		57.6	51.3	89	58.3	49.1	84	4	74-120/24
75-25-2	Bromoform	ND		57.6	57.5	100	58.3	45.1 55.7	96	3	76-127/26
78-93-3	2-Butanone (MEK)	ND		288	200	69*	291	208	71*	4	75-137/25
75-15-0	Carbon Disulfide	ND		57.6	43.5	75	58.3	41.6	71*		
56-23-5	Carbon Tetrachloride	ND		57.6	45.3	79	58.3		72*	4	72-122/29
108-90-7	Chlorobenzene	ND		57.6	45.3 55.0	95	58.3	41.7 47.4	81	8 15	78-133/29
75-00-3	Chloroethane	ND		57.6	47.8	83	58.3	47.4	73	12	81-129/29 68-133/29
67-66-3	Chloroform	ND		57.6	45.5	79	58.3	42.5 40.8	70*	11	72-123/26
110-82-7	Cyclohexane	ND		57.6	48.1	83	58.3	40.8 42.2	72*	13	
124-48-1	Dibromochloromethane	ND		57.6	55.1	96	58.3	50.3	86	9	73-126/32 76-127/27
96-12-8	1,2-Dibromo-3-chloropropane	ND		57.6	48.3	84	58.3	49.6	85	3	70-127/27
106-93-4	1,2-Dibromoethane	ND		57.6	55.8	97	58.3	49.0 53.0	91	5	77-126/26
75-71-8	Dichlorodifluoromethane	ND		57.6	52.9	92	58.3	47.3	81	5 11	68-168/29
95-50-1	1,2-Dichlorobenzene	ND		57.6	55.0	95	58.3	47.6	82	14	
541-73-1	1,3-Dichlorobenzene	ND		57.6	53.9	94	58.3	46.7	80*	14	80-129/32
106-46-7	1,4-Dichlorobenzene	ND		57.6	51.7	90	58.3	45.3	78	13	81-129/33 76-130/32
75-34-3	1,1-Dichloroethane	ND		57.6	48.6	84	58.3	43.3 42.3	73	14	
107-06-2	1,2-Dichloroethane	ND		57.6	51.9	90	58.3	42.3 49.0	84	6	73-125/27
75-35-4	1,1-Dichloroethylene	ND		57.6	44.8	78*	58.3	49.0 41.9	72*	7	74-128/23
156-59-2	cis-1,2-Dichloroethylene	ND		57.6	50.6	88	58.3	43.9	75	14	81-136/28 74-126/26
156-60-5	trans-1,2-Dichloroethylene	ND		57.6	30.a 48.7	85	58.3	43.9 42.9	74	13	70-127/27
78-87-5	1,2-Dichloropropane	ND		57.6	52.6	91	58.3	42.9 49.2	84	7	74-125/25
	cis-1,3-Dichloropropene	ND		57.6	53.5	93	58.3	49.2 50.6	87	6	80-123/26
	trans-1,3-Dichloropropene	ND		57.6	56.4	98	58.3	50.6 51. 7	89		
10001-02-0	Ethylbenzene	ND		57.6	54.2	94	58.3	48.0	82	9 12	75-131/28
76-13-1	Freon 113	ND		57.6	40.9	71	58.3	38.2	66*	7	77-123/31
591-78-6	2-Hexanone	ND		288	238	83	291	36.2 259	89		71-129/30
98-82-8	Isopropylbenzene	ND		57.6	58.3	101	58.3	49.2	84	8 17	72-133/26
99-87-6	p-Isopropyltoluene	ND		57.6	54.1	94	58.3	49.2 45.5	78	17	80-136/32
79-20-9	Methyl Acetate	ND		288	264	92	291				77-131/34
74-83-9	Methyl Bromide	ND		208 57.6	204 53.5	93	58.3	256	Show	and	67-137/30
74-87-3	Methyl Chloride	ND		57.6	51.3	93 89	58.3	49.3	79	1	65-139/31
1 4-01-9	wedyi Chloride	MD		31.0	21.3	99	35.3	46:0	19	1	71-144/27

^{* =} Outside of Control Limits.

FA34301

" ifael Influte

IC # 1888

Page 2 of 2

Matrix Spike/Matrix Spike Duplicate Summary

Job Number:

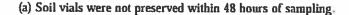
FA34301

Account:

AMANYWP Anderson, Mulholland & Associates

Project:

BMSMC, Building 5 Area, Humacao, PR


Sample File ID	1	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
FA34301-1MS Y28915.		05/27/16	EP	n/a	n/a	VY1168
FA34301-1MSD Y28916.		05/27/16	EP	n/a	n/a	VY1168
FA34301-1 a Y28908.		05/27/16	EP	n/a	n/a	VY1168

The QC reported here applies to the following samples:

Method: SW846 8260C

FA34301-1, FA34301-2

			FA34301-1 S		MS	MS MS	Spike	MSD	MSD		Limits	
CAS No.	Compound	ug/kg	Q	ug/kg	ug/kg	%	ug/kg	ug/kg	%	RPD	Rec/RPD	
108-87-2	Methylcyclohexane	ND		57.6	47.2	82	58.3	43.4	74*	8	75-128/31	
75-09-2	Methylene Chloride	16.4	В	57.6	56.0	69*	58.3	50.6	59*	10	74-137/28	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		288	247	86	291	260	89	5	76-132/26	
1634-04-4	Methyl Tert Butyl Ether	2.7	J	57.6	52.5	86	58.3	48.0	78	9	77-120/24	
100-42-5	Styrene	ND		57.6	58.8	102	58.3	52.8	91	11	78-125/30	
75-85-4	Tert-Amyl Alcohol	ND		576	610	106	583	627	108	3	69-130/32	
75-65-0	Tert-Butyl Alcohol	104		576	614	88	583	552	77	11	74-126/32	
79-34-5	1,1,2,2-Tetrachloroethane	ND		57.6	48.0	83	58.3	45.8	79	5	71-126/30	
127-18-4	Tetrachloroethylene	ND		57.6	59.5	103	58.3	50.4	86	17	79-130/31	
109-99-9	Tetrahydrofuran	ND		57.6	44.7	78	58.3	49.8	85	11	70-133/26	
108-88-3	Toluene	ND		57.6	52.6	91	58.3	46.5	80	12	76-124/30	
87-61-6	1,2,3-Trichlorobenzene	ND		57.6	55.6	96	58.3	49.0	84	13	77-128/35	
120-82-1	1,2,4-Trichlorobenzene	ND		57.6	54.3	94	58.3	46.4	80	16	78-130/34	
71-55-6	1,1,1-Trichloroethane	ND		57.6	49.2	85	58.3	44.1	76	11	70-129/27	
79-00-5	1,1,2-Trichloroethane	ND		57.6	52.0	90	58.3	49.0	84	6	74-124/28	
79-01-6	Trichloroethylene	ND		57.6	54.0	94	58.3	46.4	80	15	75-128/27	
75-69-4	Trichlorofluoromethane	ND		57.6	48.6	84	58.3	43.8	75	10	73-145/31	
95-63-6	1,2,4-Trimethylhenzene	ND		57.6	55.0	95	58.3	47.1	81	15	74-123/34	
75-01-4	Vinyl Chloride	ND		57.6	45.3	79	58.3	46.3	79	2	76-141/27	
	m,p-Xylene	ND		115	113	98	117	101	87	11	80-128/30	
95-47-6	o-Xylene	ND		57.6	56.3	98	58.3	52.0	89	8	80-132/30	
CAS No.	Surrogate Recoveries	MS		MSD	MSD FA34301-1		Limits					
1868-53-7	Dibromofluoromethane	96%		97%	999	6	75-1249	6	PEN	PURING	S. Car	
17060-07-0	1,2-Dichloroethane-D4	92%		100%	108	%	72-1359	6	/ 7/			
2037-26-5	Toluene-D8	97%		99%	102	%	75-1269	6	3/1	fact Infi	me 6	
460-00-4	4-Bromofluorobenzene	107%		107%	119	%	71-1339	6	5	Méndez	THE STATE OF THE S	

^{* =} Outside of Control Limits.

Page 1 of 2

Method: SW846 8260C

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: FA34301

Account: AMANYWP Anderson, Mulholland & Associates

Project: BMSMC, Building 5 Area, Humacao, PR

Sample FA34301-3MS FA34301-3MSD FA34301-3	File ID J0976906.D J0976907.D J0976892.D	DF 1 1	Analyzed 05/28/16 05/28/16 05/28/16	By SP SP SP	Prep Date n/a n/a n/a	Prep Batch n/a n/a n/a	Analytical Batch VJ5319 VJ5319 VJ5319

The QC reported here applies to the following samples:

FA34301-3, FA34301-4

CAS No.	Compound	FA3430 ug/l	I-3 Q	Spike ug/l	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
67-64-1	Acetone	ND		125	96.4	77	125	104	83	8	50-147/21
71-43-2	Benzene	0.21	ī	25	25.2	100	25	24.7	98	2	81-122/14
100-44-7	Benzyl Chloride	ND	J	25	18.2	73	25	18.0	72	1	54-122/18
74-97-5	Bromochloromethane	ND		25	21.8	87	25	22.9	92	5	76-123/14
75-27-4	Bromodichloromethane	ND		25	23.5	94	25	22.0	88	7	79-123/19
75-25-2	Bromoform	ND		25	17.9	72	25	18.2	73	2	66-123/21
78-93-3	2-Butanone (MEK)	ND		125	106	85	125	113	90	6	56-143/18
75-15-0	Carbon Disulfide	0.88	J	25	20.8	80	25	20.8	80	0	66-148/23
56-23-5	Carbon Tetrachloride	ND	,	25	25.2	101	25	23.6	94	7	76-136/23
108-90-7	Chlorobenzene	ND		25	24.0	96	25	24.0	96	0	82-124/14
75-00-3	Chloroethane	ND		25	26.5	106	25	25.2	101	5	62-144/20
67-66-3	Chloroform	0.34	I	25	24.9	98	25	24.7	97	1	80-124/15
110-82-7	Cyclohexane	7.2	•	25	33.1	104	25	32.7	102	1	73-138/18
124-48-1	Dibromochloromethane	ND		25	21.1	84	25	20.7	83	2	78-122/19
96-12-8	1,2-Dibromo-3-chloropropane	ND		25	19.9	80	25	21.0	84	5	64-123/18
106-93-4	1,2-Dibromoethane	ND		25	23.2	93	25	24.2	97	4	75-120/13
75-71-8	Dichlorodifluoromethane	ND		25	25.1	100	25	25.4	102	1	42-167/19
95-50-1	1,2-Dichlorobenzene	ND		25	24.0	96	25	24.3	97	1	82-124/14
541-73-1	1,3-Dichlorobenzene	ND		25	24.2	97	25	24.8	99	2	84-125/14
106-46-7	1,4-Dichlorobenzene	ND		25	23.4	94	25	23.7	95	1	78-120/15
75-34-3	1,1-Dichloroethane	ND		25	25.8	103	25	26.0	104	1	81-122/15
107-06-2	1,2-Dichloroethane	ND		25	24.0	96	25	23.7	95	1	75-125/14
75-35-4	1,1-Dichloroethylene	ND		25	24.8	99	25	25.5	102	3	78-137/18
156-59-2	cis-1,2-Dichloroethylene	ND		25	23.3	93	25	24.1	96	3	78-120/15
156-60-5	trans-1,2-Dichloroethylene	ND		25	27.5	110	25	27.7	111	1	76-127/17
78-87-5	1,2-Dichloropropane	ND		25	23.9	96	25	23.4	94	2	76-124/14
10061-01-5		ND		25	22.9	92	25	21.7	87	5	75-118/23
10061-02-6	trans-1,3-Dichloropropene	ND		25	24.6	98	25	23.7	95	4	80-120/22
100-41-4	Ethylbenzene	ND		25	24.4	98	25	24.1	96	1	81-121/14
76-13-1	Freon 113	ND		25	21.9	88	25	22.0	88	0	72-134/20
591-78-6	2-Hexanone	ND		125	111	89	125	115	92	4	61-129/18
98-82-8	Isopropylbenzene	0.79	J	25	28.5	111	25	28.4	110	0	83-132/15
99-87-6	p-Isopropyltoluene	ND		25	25.9	104	25	25.8	103	0	79-130/16
79-20-9	Methyl Acetate	ND		125	107	86	125	114	91	6	65-126/18
74-83-9	Methyl Bromide	ND		25	25.1	100	25	24.2	97	4	59-143/19
74-87-3	Methyl Chloride	ND		25	25.4	102	25	26.2	105	3	50-159/19

^{* =} Outside of Control Limits.

fact Infante

33 of 390 **ACCUTEST**

Page 2 of 2

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: FA34301

Account:

AMANYWP Anderson, Mulholland & Associates

Project:

BMSMC, Building 5 Area, Humacao, PR

Sample FA34301-3MS FA34301-3MSD FA34301-3	File ID J0976906.D J0976907.D J0976892.D	DF 1 1	Analyzed 05/28/16 05/28/16 05/28/16	By SP SP SP	Prep Date n/a n/a n/a	Prep Batch n/a n/a n/a	Analytical Batch VJ5319 VJ5319 VJ5319
--	---	--------------	--	----------------------	--------------------------------	---------------------------------	--

The QC reported here applies to the following samples:

Method: SW846 8260C

FA34301-3, FA34301-4

		FA3430	1-3	Spike	MS	MS	Spike	MSD	MSD		Limits
CAS No.	Compound	ug/l	Q	ug/l	ug/l	%	ug/l	ug/l	%	RPD	Roc/RPD
108-87-2	Methylcyclohexane	ND		25	25.9	104	25	25.4	102	2	76-129/17
75-09-2	Methylene Chloride	ND		25	23.0	92	25	23.2	93	1	69-135/16
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		125	117	94	125	123	98	5	66-122/16
1634-04-4	Methyl Tert Butyl Ether	67.9		25	90.0	88	25	93.9	104	4	72-117/14
100-42-5	Styrene	ND		25	20.4	82	25	20.1	80	1	78-119/23
75-85-4	Tert-Amyl Alcohol	ND		250	229	92	250	242	97	6	65-124/23
75-65-0	Tert-Butyl Alcohol	1940	E	250	2210	108	250	2260	128	2	63-129/27
79-34-5	1,1,2,2-Tetrachloroethane	ND		25	23.4	94	25	24.4	98	4	72-120/14
127-18-4	Tetrachloroethylene	ND		25	23.7	95	25	24.0	96	1	76-135/16
109-99-9	Tetrahydrofuran	4.9	J	25	26.7	87	25	28.5	94	7	56-122/21
108-88-3	Toluene	ND		25	24.0	96	25	24.0	96	0	80-120/14
87-61-6	1,2,3-Trichlorobenzene	ND		25	21.0	84	25	23.0	92	9	68-131/25
120-82-1	1,2,4-Trichlorobenzene	ND		25	22.0	88	25	23.7	95	7	73-129/20
71-55- 6	1,1,1-Trichloroethane	ND		25	24.0	96	25	24.0	96	0	75-130/16
79-00-5	1,1,2-Trichloroethane	ND		25	24.2	97	25	24.5	98	1	76-119/14
79-01-6	Trichloroethylene	ND		25	25.7	103	25	25.9	104	1	81-126/15
75-69-4	Trichlorofluoromethane	ND		25	25.2	101	25	25.3	101	0	71-156/21
95-63-6	1,2,4-Trimethylbenzene	ND		25	25.7	103	25	25.5	102	1	79-120/18
75-01-4	Vinyl Chloride	ND		25	24.5	98	25	23.9	96	2	69-159/18
	m,p-Xylene	ND		50	48.9	98	50	48.4	97	1	79-126/15
95-47-6	o-Xylene	ND		2 5	25.8	103	25	25.9	104	0	80-127/14
CAS No.	Surrogate Recoveries	MS		MSD	FA	34301-3	Limits		II 1 5		
1868-53-7	DibromoΠuoromethane	101%		101%	100)%	83-1189	6	26 19	SHED	
17060-07-0	1,2-Dichloroethane-D4	99%		101%	101	1%	79-1259	6	/ 3/		
2037-26-5	Toluene-D8	96%		98%	102	2%	85-1129	6	25 11 4	aei Infim	13/
460-00-4	4-Bromofluorobenzene	98%		99%	104	1%	83-1189	6	and the same	viéndez	

^{* -} Outside of Control Limits.

SGS ACCU	CHAI	IN OF CUSTO	DY F. 18-Virdani Tanjo FL	A34301 808287530897	PAGEOF
Apperson Molhalbad Aspence 2700 Westchester Durchase NY	4		P	7004	DW - Dividing Water CW - Chapted Water CW - Chapted Veter WW - Water SW - Barkstan Veter BC - Sed 81 - Study SED-Sadhman CI - Cd
Terry Taylor 114-251-0400 Taylor, N. Livery D. Wostra	Present # Cleret Purchase Order # Publish Manager Control	City 5:	20	Now I would	LC) - Chres Lapar ARI - Au SIC Ober Ind. WP - Wipe FIS-Facilities ISB-Copariner I Street TIS-Top Stant TIS-Top Stant
Field ID / Point of Collection RA7 (4-5) RA7 (4-5)	05/25/16 1010 05/25/16 1010 05/25/16 1010	17 50 4 17 50 3	1000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		LAB USE ONLY
2 MW-225(25-3.7) 3 RA7-GWD 3 RA7-GWD-MS 3 RA7-GWD-MSD 4 TB052516	5/5/16 11 12. 05/5/16 1330 05/15/16 1330 05/15/16 1330 05/15/16 0800	UR SO 4 11 GN 3 3 11 GN 3 3 11 GN 3 3	/ 3 ×		
Torra and The (bureau des)	23/B/E U300				
Maria in Brandonce Dry For Gold Sept of Control of Cont		Date Defice Commonced "A" (Level 3) Commonced "A" (Level 3) Commonced "A" (Level 3) FULLT! { Level 3-4} M.7 Reduced Commonced "C" All Otto of Known Guelle Communicati "A" "- Results Drie, Com	INVASP Category /	Add to Acp	erts Tetrahydrofuran, 1 tolune Beazyl Chlorides tranctual beazers
ANTHAN BIC	Example Custody meet be done W Page Reserved by:		ory - Partid Raw data I change procession, including FX	Sample inventory is 9	ordinal upon receipt in the Laboratory

FA34301: Chain of Custody Page 1 of 3

EXECUTIVE NARRATIVE

SDG No:

FA34301

Laboratory:

Accutest, Florida

Analysis:

SW846-8260C

Number of Samples:

0

Location:

BMSMC - Building 5 Area

Humacao, PR

SUMMARY:

Eight (8) samples were analyzed for volatile organic compounds (VOCs) by method SW846-8260C. The sample results were assessed according to USEPA data validation guidance documents in the following order of precedence: USEPA Hazardous Waste Support Section SOP No. HW-33A Revision 0 SOM02.2. Low/Medium Volatile Data Validation. July, 2015. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted. Results are valid and can be used for decision making purposes.

Critical issues:

None

Major:

None

Minor:

None

Critical findings:

None

Major findings:

None

Minor findings:

1. Sample FA34301-4 was analyzed outside the method recommended holding time. No action, the sample was a trip blank.

Soil samples FA34301-1 and FA34301-2 not preserved within 48 hours of collection. Results for these samples not qualified, samples analyzed within seven days of collection.

2. Acetone initial calibration verification was outside the method performance criteria but within the guidance validation document criteria. No action taken.

Vinyl chloride continuing calibration verification was outside the method performance criteria but within the guidance validation document criteria. No action taken.

- 3. Methylene chloride detected in method blank below the reporting limit. Methylene chloride detected in sample FA34301-1 at a concentration above the reporting limit. Laboratory qualified the result as (B), no further qualification performed. Methylene chloride detected in sample FA34301-2 at a concentration below the reporting limit. Laboratory qualified the result as (JB), no further qualification performed.
- 4. Several analytes recovered below the laboratory lower control limits but within generally acceptable control limits in sample FA34301-1 (QC sample for the batch). Results qualified in sample FA34301-1 for analytes not meeting the MS/MSD criteria as (J) or (UJ).

COMMENTS:

Results are valid and can be used for decision making purposes.

Reviewers Name:

Rafael Infante

Chemist License 1888

Signature:

Date:

June 11, 2016

SAMPLE ORGANIC DATA SAMPLE SUMMARY

Sample ID: FA34301-1

Sample location: BMSMC Building 5 Area

Sampling date: 5/27/2016 Matrix: Soil

cis-1,2-Dichloroethene	1,1-Dichloroethene	1,2-Dichloroethane	1,1-Dichloroethane	1,4-Dichlorobenzene	1,3-Dichlorobenzene	1,2-Dichlorobenzene	Dichlorodifluoromethane	1,2-Dibromoethane	1,2-Dibromo-3-chloropropane	Dibromochloromethane	Cyclohexane	Chloroform	Chloroethane	Chlorobenzene	Carbon tetrachloride	Carbon disulfide	2-Butanone (MEK)	Bromoform	Bromodichloromethane	Bromochloromethane	Benzyl Chloride	Benzene	Acetone	Analyte Name
5.9	5.9	5.9	5,9	5.9	5.9	5.9	5.9	5.9	5.9	5.9	5.9	5.9	5.9	5.9	5.9	5.9	29	5.9	5.9	5.9	5.9	5.9	15.0	Result
ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	Units Di
1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	Units Dilution Factor Lab Flag
ı		•	1				t		•	1	1	•	1	1	1	1	1	,	•	1			_	Lab Flag
C	⋸	_	_	C	⊆	C	C	C	C	_		S	C	C	⊆	⊆	⊆	C	C	C	C	C	2	Validation
Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Reportable

Vinyl chloride m,p-Xylene o-Xylene	1,2,4-Trimethylbenzene	Trichloroethene Trichlorofluoromethane	1,1,2-Trichloroethane	1,1,1-Trichloroethane	1,2,4-Trichlorobenzene	1,2,3-Trichlorobenzene	Toluene	Tetrahydrofuran	Tetrachloroethene	1,1,2,2-Tetrachloroethane	Tert-Butyl Alcohol	Tert-Amyl Alcohol	Styrene	Methyl Tert Butyl Ether	4-Methyl-2-pentanone(MIBK)	Methylene chloride	Methylcyclohexane	Methyl Chloride	Methyl Bromide	Methyl Acetate	p-Isopropyltoluene	Isopropylbenzene	2-Hexanone	Freon 113	Ethylbenzene	trans-1,3-Dichloropropene	cis-1,3-Dichloropropene	1,2-Dichloropropane	trans-1,2-Dichloroethene
5.9 12 5.9	5.9	o; o;	5.9	5.9	5.9	5.9	5.9	12	5.9	5.9	104	59	5.9	2.7	29	16.4	5.9	5.9	5.9	29	5.9	5.9	29	5.9	5.9	5.9	5.9	5.9	5.9
ug/kg ug/kg ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
1.0 1.0 1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
1 1 1		1 1	C	,	è	Ċ		i	1	,	,	,	ī	_	1	В		Ĭ	ï	1		_		ī	ï		1	ı	,
c c c		c c	C	C	_	C	C	C	_	C	,	C	C	5	C	J	⋸	C	_	_	C	⊆	C	⊆	_	_	_	C	C
Yes Yes Yes	Yes	Yes Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Sample ID: FA34301-2 Sample location: BMSMC Building 5 Area Sampling date: 5/25/2016 Matrix: Soil

1,2-Dichloropropane	trans-1,2-Dichloroethene	cis-1,2-Dichloroethene	1,1-Dichloroethene	1,2-Dichloroethane	1,1-Dichloroethane	1,4-Dichlorobenzene	1,3-Dichlorobenzene	1,2-Dichlorobenzene	Dichlorodifluoromethane	1,2-Dibromoethane	1,2-Dibromo-3-chloropropane	Dibromochloromethane	Cyclohexane	Chloroform	Chloroethane	Chlorobenzene	Carbon tetrachloride	Carbon disulfide	2-Butanone (MEK)	Bromoform	Bromodichloromethane	Bromochloromethane	Benzyl Chloride	Benzene	Acetone	Analyte Name	
5.1	5.1	5.1	5.1	5.1	5.1	5.1	5.1	5.1	5.1	5.1	5.1	5.1	5.1	5.1	5.1	5.1	5.1	5.1	25	5.1	5.1	5.1	5.1	5.1	51	Result	ATELLIOD: 9700C
ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	Units Dil	
1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	Units Dilution Factor Lab Flag	
1	٠	1	1	1	ı	1		1	1		ı	ı	•			f	ı	ı	ı	r	•	1	1	1	•	Lab Flag	
⊂	_	C	C	C	C	C	⊂	C	C	C	_	C	C	C	C	_	<u> </u>	C	_	C	<u>_</u>	C	C	C	C	Validation	
Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	alidation Reportable	

o-Xylene	m,p-Xylene	Vinyl chloride	1,2,4-Trimethylbenzene	Trichlorofluoromethane	Trichloroethene	1,1,2-Trichloroethane	1,1,1-Trichloroethane	1,2,4-Trichlorobenzene	1,2,3-Trichlorobenzene	Toluene	Tetrahydrofuran	Tetrachloroethene	1,1,2,2-Tetrachloroethane	Tert-Butyl Alcohol	Tert-Amyl Alcohol	Styrene	Methyl Tert Butyl Ether	4-Methyl-2-pentanone(MIBK)	Methylene chloride	Methylcyclohexane	Methyl Chloride	Methyl Bromide	Methyl Acetate	p-IsopropyItoluene	Isopropylbenzene	2-Hexanone	Freon 113	Ethylbenzene	trans-1,3-Dichloropropene	cis-1,3-Dichloropropene
5.1	10	5.1	5.1	5.1	5.1	5.1	5.1	5.1	5.1	5.1	10	5.1	5.1	51	51	5.1	5.1	25	6.2	5.1	5.1	5.1	25	5.1	5.1	25	5.1	5.1	5.1	5.1
ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
ı		,	ı	i i	1	ï	Ė	1	,	ı.				,			i	Ċ	В	ř		,		2	i	Ö				,
C	C	_	_	C	C	C	C	C	C	C		C			C	C	C	_	C	C	_	C	_	C	C	C	C	_	_	C
Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Sample ID: FA34301-3

Sample location: BMSMC Building 5 Area Sampling date: 5/25/2016

Matrix: Groundwater

1,2-Dichloropropane	trans-1,2-Dichloroethene	cis-1,2-Dichloroethene	1,1-Dichloroethene	1,2-Dichloroethane	1,1-Dichloroethane	1,4-Dichlorobenzene	1,3-Dichlorobenzene	1,2-Dichlorobenzene	Dichlorodifluoromethane	1,2-Dibromoethane	1,2-Dibromo-3-chloropropane	Dibromochloromethane	Cyclohexane	Chloroform	Chloroethane	Chlorobenzene	Carbon tetrachloride	Carbon disulfide	2-Butanone (MEK)	Bromoform	Bromodichloromethane	Bromochloromethane	Benzyl Chloride	Benzene	Acetone	Analyte Name	
1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	2.0	2.0	5.0	1.0	7.2	0.34	2.0	1.0	1.0	0.88	5.0	1.0	1.0	1.0	1.0	0.21	25	Result	r = 100. 02000
ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ng/L	ug/L	ug/L	ug∕L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	٠.	
1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	Dilution Factor Lab Flag	
1	1	ı	•	r	ı	ı	ı	,	ı	ι	•			_	ı	•	1	٦	1	,	1	•	•	_		Lab Flag	
C	C	C	C	C	C	C	C	C	C	_	C	_	ı	٥	C	C	C	⊆	C	C	C	_	C	⊆	C	Validation	
Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Reportable	

o-Xylene	m,p-Xylene	Vinyl chloride	1,2,4-Trimethylbenzene	Trichlorofluoromethane	Trichloroethene	1,1,2-Trichloroethane	1,1,1-Trichloroethane	1,2,4-Trichlorobenzene	1,2,3-Trichlorobenzene	Toluene	Tetrahydrofuran	Tetrachloroethene	1,1,2,2-Tetrachloroethane	Tert-Butyl Alcohol	Tert-Amyl Alcohol	Styrene	Methyl Tert Butyl Ether	4-Methyl-2-pentanone(MIBK)	Methylene chloride	Methylcyclohexane	Methyl Chloride	Methyl Bromide	Methyl Acetate	p-Isopropyltoluene	Isopropylbenzene	2-Hexanone	Freon 113	Ethylbenzene	trans-1,3-Dichloropropene	cis-1,3-Dichloropropene
1.0	2.0	1.0	1.0	2.0	1.0	1.0	1.0	2.0	2.0	1.0	4.9	1.0	1.0	1740	20	1.0	67.9	5.0	5.0	1.0	2.0	2.0	20	1.0	0.79	10	1.0	1.0	1.0	1.0
ug/L	⊔g/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	J∕Bn	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug∕L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	20.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
,	e	1	•	r.			,	,	ı	1	_	·	,	ï	¢	i	•	1	٠	ı	9	ì		1	_	i i	ì			1
C	C	C	C	C	_	_	_	C	C	C	9	_	_	•	_	C	•	_	_	C	_	C	_	C	2	_	_	C	_	C
Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Sample ID: FA34301-4
Sample location: BMSMC Building 5 Area
Sampling date: 5/13/2016

Matrix: AQ -Trip Blank Water

trans-1,2-Dichloroethene	cis-1,2-Dichloroethene	1,1-Dichloroethene	1,2-Dichloroethane	1,1-Dichloroethane	1,4-Dichlorobenzene	1,3-Dichlorobenzene	1,2-Dichlorobenzene	Dichlorodifiuoromethane	1,2-Dibromoethane	1,2-Dibromo-3-chloropropane	Dibromochloromethane	Cyclohexane	Chloroform	Chloroethane	Chlorobenzene	Carbon tetrachloride	Carbon disulfide	2-Butanone (MEK)	Bromoform	Bromodichloromethane	Bromochloromethane	Benzyl Chloride	Benzene	Acetone	Analyte Name
1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	2.0	2.0	5.0	1.0	1.0	1.0	2.0	1.0	1.0	2.0	5.0	1.0	1.0	1.0	1.0	1.0	25	Result
ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	Units Dil
1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	Dilution Factor Lab Flag
1	1	ı	•	ı	1	•	·	1	•	•	•		,	1	ı	1	ŧ	1	,	•	1	,	٠	٠	Lab Flag
C	_	<u> </u>	C	C	C	C	C	C	_	C	C	<u>_</u>	C	_	C	C	C	_	_	C	_	_	C	C	Validation
Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Validation Reportable

m,p-Xylene o-Xylene	1,2,4-Trimethylbenzene Vinyl chloride	Trichlorofluoromethane	Trichloroethene	1,1,2-Trichloroethane	1,1,1-Trichloroethane	1,2,4-Trichlorobenzene	1,2,3-Trichlorobenzene	Toluene	Tetrahydrofuran	Tetrachloroethene	1,1,2,2-Tetrachloroethane	Tert-Butyl Alcohol	Tert-Amyl Alcohol	Styrene	Methyl Tert Butyl Ether	4-Methyl-2-pentanone(MIBK)	Methylene chloride	Methylcyclohexane	Methyl Chloride	Methyl Bromide	Methyl Acetate	p-Isopropyltoluene	Isopropylbenzene	2-Hexanone	Freon 113	Ethylbenzene	trans-1,3-Dichloropropene	cis-1,3-Dichloropropene	1,2-Dichloropropane
1.0 2.0 1.0	1.0	2.0	1.0	1.0	1.0	2.0	2.0	1.0	5.0	1.0	1.0	20	20	1.0	1.0	5.0	5.0	1.0	2.0	2.0	20	1.0	1.0	10	1.0	1.0	1.0	1.0	1.0
n8/L n8/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug∕L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
1.0	. 1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
31 I I	- 1	i	r.		,		,	,	1	,	r	9	,	e.	į	•	•		1	•	٠	•	•	ï		,	,	,	1
c c c	: c	C	C	C	C	<u>_</u>	<u>_</u>	C	_	C	_	_	C	C	C	C	C	C	_	C	C	C	C	C	C	C	C	C	C
Yes Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Sample ID: FA34301-1MS

Sample location: BMSMC Building 5 Area Sampling date: 5/25/2016
Matrix: Soil

	METHOD: 8260C					
Analyte Name	Result	Units Dil	Units Dilution Factor	Lab Flag	Validation	Validation Reportable
Acetone	151	ug/kg	1.0	1	1	Yes
Benzene	52.5	ug/kg	1.0	1	•	Yes
Benzyl Chloride	44.8	ug/kg	1.0	,	•	Yes
Bromochloromethane		ug/kg	1.0	,	6	Yes
Bromodichloromethane	51.3	ug/kg	1.0		•	Yes
Bromoform		ug/kg	1.0	ı	•	Yes
2-Butanone (MEK)		ug/kg	1.0	•	ı	Yes
Carbon disulfide	43.5	ug/kg	1.0	1	1	Yes
Carbon tetrachloride		ug/kg	1.0	1	1	Yes
Chlorobenzene	55.0	ug/kg	1.0	1		Yes
Chloroethane		ug/kg	1.0	•	1	Yes
Chloroform	45.5	ug/kg	1.0		ı	Yes
Cyclohexane	48.1	ug/kg	1.0	,	ı	Yes
Dibromochloromethane		ug/kg	1.0	•	ı	Yes
1,2-Dibromo-3-chloropropane		ug/kg	1.0	1	•	Yes
1,2-Dibromoethane	55.8	ug/kg	1.0	1	ı	Yes
Dichlorodifluoromethane		ug/kg	1.0	1	ı	Yes
1,2-Dichlorobenzene		ug/kg	1.0	ı	•	Yes
1,3-Dichlorobenzene		ug/kg	1.0	1	ı	Yes
1,4-Dichlorobenzene	51.7	ug/kg	1.0	•	ı	Yes
1,1-Dichloroethane		ug/kg	1.0	ı	•	Yes
1,2-Dichloroethane	51.9	ug/kg	1.0	•		Yes
1,1-Dichloroethene	44.8	ug/kg	1.0	1		Yes
cis-1,2-Dichloroethene		ug/kg	1.0	1	1	Yes
trans-1,2-Dichloroethene		ug/kg	1.0	ı	•	Yes
1,2-Dichloropropane	52.7	ug/kg	1.0	•	,	Yes

o-Xylene	m,p-Xylene	Vinyl chloride	1,2,4-Trimethylbenzene	Trichlorofluoromethane	Trichloroethene	1,1,2-Trichloroethane	1,1,1-Trichloroethane	1,2,4-Trichlorobenzene	1,2,3-Trichlorobenzene	Toluene	Tetrahydrofuran	Tetrachloroethene	1,1,2,2-Tetrachioroethane	Tert-Butyl Alcohol	Tert-Amyl Alcohol	Styrene	Methyl Tert Butyl Ether	4-Methyl-2-pentanone(MIBK)	Methylene chloride	Methylcyclohexane	Methyl Chloride	Methyl Bromide	Methyl Acetate	p-Isopropyltoluene	Isopropylbenzene	2-Hexanone	Freon 113	Ethylbenzene	trans-1,3-Dichloropropene	cis-1,3-Dichloropropene
57.6	113.0	45.3	55.0	48.6	54.0	52.0	49.2	54.3	55.6	52.6	44.7	59.5	48.0	614	610	58.8	52.5	247	56.0	47.2	51.3	53.5	264	54.1	58.3	238	40.9	54.2	56.4	53.5
ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	2.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
1	1	1	,	i,	1	1	e i	•	,	ı.	1	ï	1	,	1	9		c	1	•	t	·	ï		r	ı.	i	•	•	
ï	,		ï	ď		×	E	9		· ·		r	ı	7	Ç.	1	1	ı	1			•	C		ī	Ü	ì	,	i i	,
Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Sample ID: FA34301-1MSD
Sample location: BMSMC Building 5 Area
Sampling date: 5/25/2016
Matrix: Soil

IVIE!	METHOD: 8280C					
Analyte Name	Result	Units Dil	Units Dilution Factor Lab Flag	Lab Flag	Validation	Validation Reportable
Acetone	170	ug/kg	1.0	ŧ	1	Yes
Benzene	46.8	ug/kg	1.0	ı	1	Yes
Benzyl Chloride	41.6	ug/kg	1.0	•		Yes
Bromochloromethane	45.7	ug/kg	1.0	١	1	Yes
Bromodichloromethane	49.1	ug/kg	1.0	ı	1	Yes
Bromoform	55.7	ug/kg	1.0		•	Yes
2-Butanone (MEK)	208	ug/kg	1.0	1	1	Yes
Carbon disulfide	41.6	ug/kg	1.0	t		Yes
Carbon tetrachloride	41.7	ug/kg	1.0	•	1	Yes
Chlorobenzene	47.4	ug/kg	1.0	ŧ	1	Yes
Chloroethane	42.5	ug/kg	1.0	٠	1	Yes
Chloroform	40.8	ug/kg	1.0	ι		Yes
Cyclohexane	42.2	ug/kg	1.0	· ·	1	Yes
Dibromochloromethane	50.3	ug/kg	1.0		1	Yes
1,2-Dibromo-3-chloropropane	49.6	ug/kg	1.0	1	•	Yes
1,2-Dibromoethane	53.0	ug/kg	1.0	•	1	Yes
Dichlorodifluoromethane	47.3	ug/kg	1.0	٠		Yes
1,2-Dichlorobenzene	47.6	ug/kg	1.0	•		Yes
1,3-Dichlorobenzene	46.7	ug/kg	1.0	ı	•	Yes
1,4-Dichlorobenzene	45.3	ug/kg	1.0	•	•	Yes
1,1-Dichloroethane	42.3	ug/kg	1.0	•		Yes
1,2-Dichloroethane	49.0	ug/kg	1.0	1	1	Yes
1,1-Dichloroethene	41.9	ug/kg	1.0	ı	ŧ	Yes
cis-1,2-Dichloroethene	43.9	ug/kg	1.0	ı	1	Yes
trans-1,2-Dichloroethene	42.9	ug/kg	1.0	•	1	Yes
1,2-Dichloropropane	49.2	ug/kg	1.0	ι	•	Yes

o-Xylene	m,p-Xylene	Vinyl chloride	1,2,4-Trimethylbenzene	Trichlorofluoromethane	Trichloroethene	1,1,2-Trichloroethane	1,1,1-Trichloroethane	1,2,4-Trichlorobenzene	1,2,3-Trichlorobenzene	Toluene	Tetrahydrofuran	Tetrachloroethene	1,1,2,2-Tetrachloroethane	Tert-Butyl Alcohol	Tert-Amyl Alcohol	Styrene	Methyl Tert Butyl Ether	4-Methyl-2-pentanone(MIBK)	Methylene chloride	Methylcyclohexane	Methyl Chloride	Methyl Bromide	Methyl Acetate	p-IsopropyItoluene	Isopropylbenzene	2-Hexanone	Freon 113	Ethylbenzene	trans-1,3-Dichloropropene	cis-1,3-Dichloropropene
52.0	101.0	46.3	47.1	43.8	46.4	49.0	44.1	46.4	49.0	46.5	49.8	50.4	45.8	552	627	52.8	48.0	260	50.6	43.4	46.0	49.3	256	45.5	49.2	259	38.2	48.0	51.7	50.6
ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	2.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
ī	· ·		,	·	9	ī	c	•	•			,				•	•	e e	ı				· ·	,	,				,	,
•		1	ı	1	,	,	Ü		,		,	,	,		1	1	ı	ė.	ī	ı	·	ï	ř.	1		ř.	•	i	,	i
Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

. . .

Sample ID: FA34301-3MS

Sample location: BMSMC Building 5 Area Sampling date: 5/25/2016

Matrix: Groundwater

1,2-Dichloropropane	trans-1,2-Dichloroethene	cis-1,2-Dichloroethene	1,1-Dichloroethene	1,2-Dichloroethane	1,1-Dichloroethane	1,4-Dichlorobenzene	1,3-Dichlorobenzene	1,2-Dichlorobenzene	Dichlorodifluoromethane	1,2-Dibromoethane	1,2-Dibromo-3-chloropropane	Dibromochloromethane	Cyclohexane	Chloroform	Chloroethane	Chlorobenzene	Carbon tetrachloride	Carbon disulfide	2-Butanone (MEK)	Bromoform	Bromodichloromethane	Bromochloromethane	Benzyl Chloride	Benzene	Acetone	Analyte Name	
23.9	27.5	23.3	24.8	24.0	25.8	23.4	24.2	24.0	25.1	23.2	19.9	21.1	33.1	24.9	26.5	24.0	25.2	20.8	106	17.9	23.5	21.8	18.2	25.2	96.4	Result	METHOD: 9280C
l/gu	l/gu	l/gu	l/gu	l/gu	l/gu	l/gu	ug/I	l/gu	l/gu	ug/l	l/gu	l/gu	l/gu	l/gu	ug/l	ug/l	ug/i	l/gu	ug/l	ug/l	ug/l	l/gu	l/gu	ug/l	l/gu	Units Di	
1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	Dilution Factor	
																										tor	
1	1	•		1	1	1	ı	•	ı	•	1	ı	ı	ı	ı	t	•	•	1	•	•	1	ı	ı	1	tor Lab Flag	
	•	,		1			8	,		•	•	1			•	ŧ	1	•	•	,	1	1					

o-Xylene	m,p-Xylene	Vinyl chloride	1,2,4-Trimethylbenzene	Trichlorofluoromethane	Trichloroethene	1,1,2-Trichloroethane	1,1,1-Trichloroethane	1,2,4-Trichlorobenzene	1,2,3-Trichlorobenzene	Toluene	Tetrahydrofuran	Tetrachloroethene	1,1,2,2-Tetrachloroethane	Tert-Butyl Alcohol	Tert-Amyl Alcohol	Styrene	Methyl Tert Butyl Ether	4-Methyl-2-pentanone(MIBK)	Methylene chloride	Methylcyclohexane	Methyl Chloride	Methyl Bromide	Methyl Acetate	p-isopropyitoluene	Isopropyibenzene	2-Hexanone	Freon 113	Ethylbenzene	trans-1,3-Dichloropropene	cis-1,3-Dichloropropene
25.8	48.9	24.5	25.7	25.2	25.7	24.2	24.0	22.0	21.0	24.0	26.7	23.7	23.4	2210	229	20.4	90.0	117	23.0	25.9	25	25.1	107	25.9	28	111	21	24	24	22.9
.8 ug/1			.7 ug/l											10 ug/i			.0 ug/l				25.4 ug/l				28.5 ug/l	l1 ug/l	21.9 ug/l	24.4 ug/l	24.6 ug/l	.9 ug/l
1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	2.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
ā	ï	ń	9	i.	, i	1	r		ī	ı	ì	í.	,	•	i	1	,	1)	,	i i	1	Ĺ	1	,	r	,	ı	ć	,
à	t	C	q	ı	1	Ý	E	1	·	ř.	•	•		•		1	1	1	1	1	Ĉ.	,			,	i.	•		c	1
Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

. . .

Sample ID: FA34301-3MSD

Sample location: BMSMC Building 5 Area Sampling date: 5/25/2016

Matrix: Groundwater

1,2-Dichloropropane	trans-1,2-Dichloroethene	cis-1,2-Dichloroethene	1,1-Dichloroethene	1,2-Dichloroethane	1,1-Dichloroethane	1,4-Dichlorobenzene	1,3-Dichlorobenzene	1,2-Dichlorobenzene	Dichlorodifluoromethane	1,2-Dibromoethane	1,2-Dibromo-3-chloropropane	Dibromochloromethane	Cyclohexane	Chloroform	Chloroethane	Chlorobenzene	Carbon tetrachloride	Carbon disulfide	2-Butanone (MEK)	Bromoform	Bromodichloromethane	Bromochloromethane	Benzyl Chloride	Benzene	Acetone	Analyte Name
23.4	27.7	24.1	25.5	23.7	26.0	23.7	24.8	24.3	25.4	24.2	21.0	20.7	32.7	24.7	25.2	24.0	23.6	20.8	113	18.2	22.0	22.9	18.0	24.7	104	Result
l/gu	l/gu	ug/l	l/gu	l/gu	l/gu	l/gu	l/gu	l/gu	l/gu	l/gu	l/gu	l/gu	l/gu	l/gu	l/gu	l/Bn	l/gu	l/gu	l/gu	l/gu	ug/l	l/gu	l/gu	l/gu	l/gu	Units Dil
																										_
1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	ution Factor
1.0 -	1.0 -	1.0 -	1.0 -	1.0 -	1.0 -	1.0 -	1.0 -	1.0 -	1.0 -	1.0 -	1.0 -	1.0 -	1.0 -	1.0 -	1.0	1.0 -	1.0 -	1.0 -	1.0	1.0 -	1.0 -	1.0	1.0	1.0 -	1.0 -	Dilution Factor Lab Flag
1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	

o-Xylene	Vinyl chloride	1,2,4-Trimethylbenzene	Trichlorofluoromethane	Trichloroethene	1,1,2-Trichloroethane	1,1,1-Trichloroethane	1,2,4-Trichlorobenzene	1,2,3-Trichlorobenzene	Toluene	Tetrahydrofuran	Tetrachloroethene	1,1,2,2-Tetrachloroethane	Tert-Butyl Alcohol	Tert-Amyl Alcohol	Styrene	Methyl Tert Butyl Ether	4-Methyl-2-pentanone(MIBK)	Methylene chloride	Methylcyclohexane	Methyl Chloride	Methyl Bromide	Methyl Acetate	p-IsopropyItoluene	Isopropylbenzene	2-Hexanone	Freon 113	Ethylbenzene	trans-1,3-Dichloropropene	cis-1,3-Dichloropropene
25.9	23.9	25.5	25.3	25.9	24.5	24.0	23.7	23.0	24.0	28.5	24.0	24.4	2260	242	20.1	93.9	123	23.2	25.4	26.2	24.2	114	25.8	28.4	115	22.0	24.1	23.7	21.7
ug/1	ug/l	ug/l	ug/l	l/gu	l/gu	l/gu	l/gu	l/gu	l/gu	l/gu	ug/l	l/gu	l/gu	l/g⊔	l/gu	ug/l	ug/l	ug/l	ug/l	ug/l	l/gu	ug/i	ug/l	l/gu	l/gu	l/gu	ug/l	l/gu	l/gu
1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	2.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
1 1	1	,	r.		ì	i .		•	ı	·	r	,		r.	į	ï		į		•	ī	i.			ı	٠	·	1	1
я т	1	ų.	r	,	ï	,	1			ı	·	â	ı	C				ì	Ţ,	1	ı					ò	Ţ	1	,
Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Project Number	_FA3430	1
Date:	May_25,_	2016
Shipping date:_	_May_26,	_2016
EPA Region:	2	

REVIEW OF VOLATILE ORGANIC PACKAGE Low/Medium Volatile Data Validation

The following guidelines for evaluating volatile organics were created to delineate required validation actions. This document will assist the reviewer in using professional judgment to make more informed decision and in better serving the needs of the data users. The sample results were assessed according to USEPA data validation guidance documents in the following order of precedence: USEPA Hazardous Waste Support Section SOP No. HW-33A Revision 0 SOM02.2. Low/Medium Volatile Data Validation. July, 2015. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

The hardcopied (laboratory name)Accutest	data package received has been immarized. The data review for VOCs included:
Lab. Project/SDG No.:FA34301 No. of Samples: 8	
X Data CompletenessX Holding TimesX GC/MS TuningX Internal Standard PerformanceX BlanksX_ Surrogate RecoveriesX_ Matrix Spike/Matrix Spike Duplicate _OverallComments:VOA_TCL_list_(SW846_8260C)Sample_FA34301-4_(Trip_blank)_dated_05/13/16	X Laboratory Control SpikesX Field DuplicatesX CalibrationsX Compound IdentificationsX Compound QuantitationX Quantitation Limits
Definition of Qualifiers: J- Estimated results U- Compound not detected R- Rejected data UJ- Estimated not detected Reviewer: Alau arcust Date: June_8, 2016	

MISSING INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED
A.		
	-	
	1. 312	
- 1		
N1		
	- 1	
		-
		7

All criteria were mel __X__ Criteria were not met and/or see below ____

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE SAMPLED	DATE ANALYZED	pН	ACTION
FA34301-4	05/13/16	05/28/16	2>	No action; trip blank. Reported results are considered minimum values.
required criteria e	xcept soil vials. San	nples FA34301-1 and F	A34301-	Sample preservation within 2 not preserved within 48 within 7 days of sample

Criteria

Aqueous samples – 14 days from sample collection for preserved samples (pH \leq 2, 4 \pm 2°C), no air bubbles.

Aqueous samples - 7 days from sample collection for unpreserved samples, 4°C, no air bubbles.

Soil samples- 14 days from sample collection.

Cooler temperature (Criteria: 4 + 2 °C): 3.7° C - OK

Actions

Aqueous samples

- a. If there is no evidence that the samples were properly preserved (pH < 2, T = 4° C \pm 2° C), but the samples were analyzed within the technical holding time [7 days from sample collection], no qualification of the data is necessary.
- b. If there is no evidence that the samples were properly preserved, and the samples were analyzed outside of the technical holding time [7 days from sample collection], qualify detects for all volatile compounds as estimated (J) and non-detects as unusable (R).
- c. If the samples were properly preserved, and the samples were analyzed within the technical holding time [14 days from sample collection], no qualification of the data is necessary.
- d. If the samples were properly preserved, but were analyzed outside of the technical holding time [14 days from sample collection], qualify detects as estimated (J) and non-detects as unusable (R).
- e. If air bubbles were present in the sample vial used for analysis, qualify detected compounds as estimated (J-) and non-detected compounds as estimated (UJ).

Non-aqueous samples

- a. If there is no evidence that the samples were properly preserved (T < -7°C or T = 4°C \pm 2°C and preserved with NaHSO₄), but the samples were analyzed within the technical holding time [14 days from sample collection], qualify detects for all volatile compounds as estimated (J) and non-detects as (UJ) or unusable (R) using professional judgment.
- b. If the samples were properly preserved, and the samples were analyzed within the technical holding time [14 days from sample collection], no qualification of the data is necessary.
- c. If there is no evidence that the samples were properly preserved, and the samples were analyzed outside of the technical holding time [14 days from sample collection], qualify detects for all volatile compounds as estimated (J) and non-detects as unusable (R).
- d. If the samples were properly preserved, but were analyzed outside of the technical holding time [14 days from sample collection], qualify detects as estimated (J) and non-detects as unusable (R).

Qualify TCLP/SPLP samples

- a. If the TCLP/SPLP ZHE procedure is performed within the extraction technical holding time of 14 days, detects and non-detects should not be qualified.
- b. If the TCLP/SPLP ZHE procedure is performed outside the extraction technical holding time of 14 days, qualify detects as estimated (J) and non-detects as unusable (R).
- c. If TCLP/SPLP aqueous samples and TCLP/SPLP leachate samples are analyzed within the technical holding time of 7 days, detects and non-detects should not be qualified.
- d. If TCLP/SPLP aqueous samples and TCLP/SPLP leachate samples are analyzed outside of the technical holding time of 7 days, qualify detects as estimated (J) and non-detects as unusable (R).

Table 1. Holding Time Actions for Low/Medium Volatile Analyses - Summary

				Action
Matrix	Preserved	Criteria	Detected Associated Compounds	Non-Detected Associated Compounds
	No	≤ 7 days	No o	ualification
\	No	> 7 days	J	R
Aqueous	Yes	≤ 14 days	No q	ualification
	Yes	> 14 days	J	R
Non Aguaga	No	≤ 14 days	J	Professional judgment, UJ or R
Non-Aqueous	Yes	≤ 14 days	Noq	ualification
	Yes/No	> 14 days	J	R
TCLP/SPLP	Yes	≤ 14 days	No q	ualification
TCLP/SPLP	No	> 14 days	J	R

TCLP/SPLP	ZHE performed within the 14-day technical holding time	No qualification	
TCLP/SPLP	ZHE performed outside the 14-day technical holding time	J	R
TCLP/SPLP aqueous & TCLP/SPLP leachate	Analyzed within 7 days	No qualification	
TCLP/SPLP aqueous & TCLP/SPLP leachate	Analyzed outside 7 days	J	R
Sample temperature outside 4°C ± 2°C upon receipt at the laboratory		Use profess	ional judgment
Holding times grossly exceeded J R		R	

GC/MS TUNING

The assessment of the tuning results is to determine if the sample instrumentation is within the standard tuning QC limits

__X__ The BFB performance results were reviewed and found to be within the specified criteria.
__X__ BFB tuning was performed for every 12 hours of sample analysis.

NOTES: All mass spectrometer instrument conditions must be identical to those used during the sample analysis. Background subtraction actions resulting in spectral distortions for the sole purpose of meeting the method specifications are contrary to the Quality Assurance (QA) objectives, and are therefore unacceptable.

NOTES: No data should be qualified based on BFB failure. Instances of this should be noted in the narrative.

All ion abundance ratios must be normalized to m/z 95, the nominal base peak, even though the ion abundance of m/z 174 may be up to 120% that of m/z 95.

Actions:

If samples are analyzed without a preceding valid instrument performance check, qualify all data in those samples as unusable (R).

If ion abundance criteria are not met, professional judgment may be applied to determine to what extent the data may be utilized. When applying professional judgment to this topic, the most important factors to consider are the empirical results that are relatively insensitive to location on the chromatographic profile and the type of instrumentation. Therefore, the critical ion abundance criteria for BFB are the m/z 95/96, 174/175, 174/176, and 176/177 ratios. The relative abundances of m/z 50 and 75 are of lower importance. This issue is more critical for Tentatively Identified Compounds (TICs) than for target analytes.

Note: State in the Data Review Narrative, decisions to use analytical data associated with BFB instrument performance checks not meeting contract requirements.

Note: Verify that that instrument instrument performance check criteria were achieved using techniques described in Low/Medium Volatiles Organic Analysis, Section II.D.5 of the SOM02.2 NFG, obtain additional information on the instrument performance checks. Make sure that background subtraction was performed from the BFB peak and not from background subtracting from the solvent front or from another region of the chromatogram.

spectrum of the m	nass calibration compound.		
List	the	samples	affected:
16	is in error, all associated data		

All criteria were met _X
Criteria were not met
and/or see below

CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:05/27/16	05/24/16
Dates of continuing (initial) calibration:05/27/16	05/24/16
Dates of continuing calibration:	05/28/16;_05/31/16
Dates of ending calibration:05/27/16	05/28/16;_05/31/16
Instrument ID numbers:GCMSY	GCMSJ
Matrix/Level:Aqueous/low	Aqueous/low

DATE	LAB FILE	CRITERIA OUT RFs, %RSD, <u>%D</u> , r	COMPOUND	SAMPLES AFFECTED
GCMSY			·	
05/27/16	ICV1168-4	-22.4	Acetone*	None
GCMSJ				
05/31/16	cc5312-5	20.3	Vinyl chloride ⁴	None
		L		
	1			

Note: Initial calibration, initial calibration verification, and continuing calibration verification within the validation guidance document required criteria. Closing calibration check verification included in data package.

*Acetone ICV was outside the method performance criteria but within guidance document validation criteria + 40 % difference. No action taken.

 $^{\text{Vinyl}}$ chloride continuing calibration % difference outside the method performance criteria but within the guidance document validation criteria of \pm 25 % difference. No action taken.

Criteria

The analyte calibration criteria in the following Table must be obtained. Analytes not meeting the criteria are qualified.

A separate worksheet should be filled for each initial curve

Initial Calibration - Table 2. RRF, %RSD, and %D Acceptance Criteria for Initial Calibration and CCV for Low/Medium Volatile Analysis

Analyte	Minimum	Maximum	Opening	Closing
<u> </u>	RRF	%RSD	Maximum %D1	Maximum %D
Dichlorodifluoromethane	0.010	25.0	±40.0	±50.0
Chloromethane	0.010	20.0	±30.0	±50.0
Vinyl chloride	0.010	20.0	±25.0	±50.0
Bromomethane	0.010	40.0	±30.0	±50.0
Chloroethane	0.010	40.0	±25.0	±50.0
Trichlorofluoromethane	0.010	40.0	±30.0	±50.0
1,1-Dichloroethene	0.060	20.0	±20.0	±25.0
1,1,2-Trichloro-1,2,2-trifluoroethane	0.050	25.0	±25.0	±50.0
Acetone	0.010	40.0	±40.0	±50.0
Carbon disulfide	0.100	20.0	±25.0	±25.0
Methyl acetate	0.010	40.0	±40.0	±50.0
Methylene chloride	0.010	40.0	±30.0	±50.0
trans-1,2-Dichloroethene	0.100	20.0	±20.0	±25.0
Methyl tert-butyl ether	0.100	40.0	±25.0	±50.0
1,1-Dichloroethane	0.300	20.0	±20.0	±25.0
cis-1,2-Dichloroethene	0.200	20.0	±20.0	±25.0
2-Butanone	0.010	40.0	±40.0	±50.0
Bromochloromethane	0.100	20.0	±20.0	±25.0
Chloroform	0.300	20.0	±20.0	±25.0
1,1,1-Trichloroethane	0.050	20.0	±25.0	±25.0
Cyclohexane	0.010	40.0	±25.0	±50.0
Carbon tetrachloride	0.100	20.0	±25.0	±25.0
Benzene	0.200	20.0	±20.0	±25.0
1,2-Dichloroethane	0.070	20.0	±20.0	±25.0
Trichloroethene	0.200	20.0	±20.0	±25.0
Methylcyclohexane	0.050	40.0	±25.0	±50.0
1,2-Dichloropropane	0.200	20.0	±20.0	±25.0
Bromodichloromethane	0.300	20.0	±20.0	±25.0
cis-1,3-Dichloropropene	0.300	20.0	±20.0	±25.0
4-Methyl-2-pentanone	0.030	25.0	±30.0	±50.0
Toluene	0.300	20.0	±20.0	±25.0
trans-1,3-Dichloropropene	0.200	20.0	±20.0	±25.0
1,1,2-Trichloroethane	0.200	20.0	±20.0	±25.0
Tetrachloroethene	0.100	20.0	±20.0	±25.0
2-Hexanone	0.010	40.0	±40.0	±50.0
Dibromochloromethane	0.200	20.0	±20.0	±25.0
1,2-Dibromoethane	0.200	20.0	±20.0	±25.0
Chlorobenzene	0.400	20.0	±20.0	±25.0
Ethylbenzene	0.400	20.0	±20.0	±25.0

Analyte	Minimum RRF	Maximum %RSD	Opening Maximum %D ¹	Closing Maximum
ni.p-Xylene	0.200	20.0	±20.0	±25.0
o-Xylene	0.200	20.0	±20.0	±25.0
Styrene	0.200	20.0	±20.0	±25.0
Bromoform	0.100	20.0	±25.0	±50.0
Isopropylbenzene	0.400	20.0	±25.0	±25.0
1,1.2,2-Tetrachloroethane	0.200	20.0	±25.0	±25.0
1,3-Dichlorobenzene	0.500	20.0	±20.0	±25.0
1,4-Dichlorobenzene	0.600	20.0	±20.0	±25.0
1,2-Dichlorobenzene	0.600	20.0	±20.0	±25.0
1.2-Dibromo-3-chloropropane	0.010	25.0	±30.0	±50.0
1,2,4-Trichlorobenzene	0.400	20.0	±30.0	±50.0
1,2,3-Trichlorobenzene	0.400	25.0	±30.0	±50.0
Deuterated Monitoring Compound				
Vinyl chloride-da	0.010	20.0	±30.0	±50.0
Chloroethane-ds	0.010	40.0	±30.0	±50.0
1,1-Dichloroethene-d2	0.050	20.0	±25.0	±25.0
2-Butanone-ds	0.010	40.0	±40.0	±50.0
Chloroform-d	0.300	20.0	±20.0	±25.0
1,2-Dichloroethane-d+	0.060	20.0	±25.0	±25.0
Benzene-de	0.300	20.0	±20.0	±25.0
1,2-Dichloropropane-ds	0.200	20.0	±20.0	±25.0
Toluene-ds	0.300	20.0	±20.0	±25.0
trans-1,3-Dichloropropene-da	0.200	20.0	±20.0	±25.0
2-Hexanone-ds	0.010	40.0	±40.0	±50.0
1,1,2,2-Tetrachloroethane-d2	0.200	20.0	±25.0	±25.0
1,2-Dichlorobenzene-d4	0.400	20.0	±20.0	±25.0

If a closing CCV is acting as an opening CCV, all target analytes and DMCs must meet the requirements for an opening CCV.

Actions:

- 1. If any volatile target compound has an RRF value less than the minimum in the table, use professional judgment for detects, based on mass spectral identification, to qualify the data as estimated (J+ or R).
 - a. If any volatile target compound has an RRF value less than the minimum criterion, qualify non-detected compounds as unusable (R).
 - b. If any of the volatile target compounds listed in the Table has %RSD greater than the criteria, qualify detects as estimated (J), and non-detected compounds using professional judgment.
 - c. If the volatile target compounds meet the acceptance criteria for RRF and the %RSD, no qualification of the data is necessary.

- d. No qualification of the data is necessary on the DMC RRF and %RSD data alone. Use professional judgment and follow the guidelines in Action 2 to evaluate the DMC RRF and %RSD data in conjunction with the DMC recoveries to determine the need for qualification of data.
- 2. At the reviewer's discretion, and based on the project-specific Data Quality Objectives (DQOs), a more in-depth review may be considered using the following guidelines:
 - a. If any volatile target compound has a %RSD greater than the maximum criterion in the Table, and if eliminating either the high or the low-point of the curve does not restore the %RSD to less than or equal to the required maximum:
 - i. Qualify detects for that compound(s) as estimated (J).
 - ii. Qualify non-detected volatile target compounds using professional judgment.
 - b. If the high-point of the curve is outside of the linearity criteria (e.g., due to saturation):
 - Qualify detects outside of the linear portion of the curve as estimated (J).
 - ii. No qualifiers are required for detects in the linear portion of the curve.
 - iii. No qualifiers are required for volatile target compounds that were not detected.
 - c. If the low-point of the curve is outside of the linearity criteria:
 - i. Qualify low-level detects in the area of non-linearity as estimated (J).
 - ii. No qualifiers are required for detects in the linear portion of the curve.
 - iii. For non-detected volatile compounds, use the lowest point of the linear portion of the curve to determine the new quantitation limit.

Note: If the laboratory has failed to provide adequate calibration information, inform the Region's designated representative to contact the laboratory and request the necessary information. If the information is not available, the reviewer must use professional judgment to assess the data.

State in the Data Review Narrative, if possible, the potential effects on the data due to calibration criteria exceedance.

Note, for the Laboratory COR action, if calibration criteria are grossly exceeded.

Table. Initial Calibration Actions for Low/Medium Volatile Analysis – Summary

Criteria	Action		
Criteria	Detect	Non-detect	
Initial Calibration not performed at specified frequency and sequence	Use professional judgment R	Use professional judgment R	
Initial Calibration not performed at the specified concentrations	J	UJ	
RRF < Minimum RRF in Table for target analyte	Use professional judgment J+ or R	Ř	
RRF Minimum RRF in Table for target analyte	No qualification	No qualification	
*•RSD > Maximum *•RSD in Table for target analyte	J	Use professional judgment	
%RSD ≤ Maximum %RSD in Table for target analyte	No qualification	No qualification	

All criteria were met __X___ Criteria were not mel and/or see below _____

Continuing Calibration Verification (CCV)

NOTE: Verify that the CCV was run at the required frequency (an opening and closing CCV must be run within 12-hour period) and the CCV was compared to the correct initial calibration. If the midpoint standard from the initial calibration is used as an opening CCV, verify that the result (RRF) of the mid-point standard was compared to the average RRF from the correct initial calibration.

The closing CCV used to bracket the end of a 12-hour analytical sequence may be used as the opening CCV for the new 12-hour analytical sequence, provided that all the technical acceptance criteria are met for an opening CCV (see criteria show before in the Table). If the closing CCV does not meet the technical acceptance criteria for an opening CCV, then a BFB tune followed by an opening CCV is required and the next 12-hour time period begins with the BFB tune.

All DMCs must meet RRF criteria. No qualification of the data is necessary on the DMCs RRF and %RSD/%D data alone. However, use professional judgment to evaluate the DMC and %RSD/%D data in conjunction with the DMC recoveries to determine the need of qualification the data.

Action:

- 1. If a CCV (opening and closing) was not run at the appropriate frequency, qualify data using professional judgment.
- 2. Qualify all volatile target compounds in Table shown before using the following criteria:
 - a. For an opening CCV, if any volatile target compound has an RRF value less than the minimum criterion, use professional judgment for detects, based on mass spectral identification, to qualify the data as estimated (J) and qualify non-detected compounds as unusable (R).
 - For a closing CCV, if any volatile target compound has an RRF value less than the criteria, use professional judgment for detects based on mass spectral identification to qualify the data as estimated (J), and qualify non-detected compounds as unusable (R).
 - c. For an opening CCV, if the Percent Difference value for any of the volatile target compounds is outside the limits in calibration criteria Table shown before, qualify detects as estimated (J) and non-detected compounds as estimated (UJ).
 - For a closing CCV, if the Percent Difference value for any volatile target compound is outside the limits in calibration criteria table, qualify detects as estimated (J) and nondetected compounds as estimated (UJ).
 - e. If the volatile target compounds meet the acceptable criteria for RRF and the Percent Difference, no qualification of the data is necessary.
 - f. No qualification of the data is necessary on the DMC RRF and the Percent Difference data alone. Use professional judgment to evaluate the DMC RRF and Percent Difference data in conjunction with the DMC recoveries to determine the need for qualification of data.

Notes: If the laboratory has failed to provide adequate calibration information, inform the Region's designated representative to contact the laboratory and request the necessary information. If the information is not available, the reviewer must use professional judgment to assess the data.

State in the Data Review Narrative, if possible, the potential effects on the data due to calibration criteria exceedance.

Note, for Contract Laboratory COR action, if calibration criteria are grossly exceeded.

Table. Continuing Calibration Actions for Low/Medium Volatile Analysis – Summary

Criteria for Opening	Criteria for	A	ction
CCV	Closing CCV	Detect	Non-detect
CCV not performed	CCV not performed	Use professional	Use professional
at required frequency	at required frequency	judgment R	judgment R
CCV not performed at specified concentration	CCV not performed at specified concentration	Use professional judgment	Use professional judgment
RRF < Minimum RRF in Table 2 for target analyte	RRF < Minimum RRF in Table for target analyte	Use professional judgment J or R	R
RRF ≥ Minimum RRF in Table 2 for target analyte	RRF ≥ Minimum RRF in Table for target analyte	No qualification	No qualification
9 6D outside the Opening Maximum 9 6D limits in Table 2 for target analyte	%D outside the Closing Maximum %D limits in Table for target analyte	J	បរ
% D within the inclusive Opening Maximum % D limits in Table 2 for target analyte	% D within the inclusive Closing Maximum % D limits in Table for target analyte	No qualification	No qualification

All criteria were met _	_X	_
Criteria were not met		
and/or see below	_	

BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contamination in the blanks below. High and low levels blanks must be treated separately.

The concentration of a target analyte in any blank must not exceed its Contract Required Quantitation Limit (CRQL) (2x CRQLs for Methylene chloride, Acetone, and 2-Butanone). TIC concentration in any blanks must be $\leq 5.0 \,\mu\text{g/L}$ for water (0.0050 mg/L for TCLP leachate) and $\leq 5.0 \,\mu\text{g/kg}$ for soil matrices.

Laboratory blanks

The method blank, like any other sample in the SDG, must meet the technical acceptance criteria for sample analysis.

DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
_No_target_ar	 nalyte_detected_ir	n_method_blank	ks_except_in_the_cases	described_in_this_document
_05/27/16		Soil/low	Methylene_chloride	
Note:	reporting limit. I Methylene chlor	Laboratory quali	ified the results as (B), r	at a concentration above the concentration performed concentration below the reporting qualification performed.
Field/Equipme	ent/Trip blank			
	olanks are presen	t, the data revie	ewer should evaluate thi	s data in a similar fashion as the
If field or trip b	olanks are presen	t, the data revie LEVEL/ MATRIX	ewer should evaluate this	s data in a similar fashion as the CONCENTRATION UNITS
If field or trip be method blanks DATE ANALYZED _No_target_an	LAB ID alytes_detected_	LEVEL/ MATRIX in_the_trip_blar	COMPOUND nkNo_field/equipment_	UNITS blanks_analyzed_with_this_data
If field or trip be method blanks DATE ANALYZED _No_target_an _package	LAB ID alytes_detected_	LEVEL/ MATRIX in_the_trip_blar	COMPOUND nkNo_field/equipment_	CONCENTRATION UNITS blanks_analyzed_with_this_data

All criteria were met _X	
Criteria were not met	
and/or see below	

BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

Note:

All fields blank results associated with a particular group of samples (may exceed one per case) must be used to qualify data. Trip blanks are used to qualify only those samples with which they were shipped. Blanks may not be qualified because of contamination in another blank. Field blanks and trip blanks must be qualified for system monitoring compounds, instrument performance criteria, and spectral or calibration QC problems.

Samples taken from a drinking water tap do not have associated field blanks.

When applied as described in the Table below, the contaminant concentration in the blank is multiplied by the sample dilution factor.

Table. Blank and TCLP/SPLP LEB Actions for Low/Medium Volatile Analysis

Blank Type	Blank Result	Sample Result	Action for Samples	
	Detects	Not detected	No qualification required	
Method, Storage, Field, Trip, TCLP/SPLP LEB, Instrument**	< CRQL *	< CRQL*	Report CRQL value with a U	
		≥ CRQL*	No qualification required	
	> CRQL *	< CRQL*	Report CRQL value with a U	
		≥ CRQL* and ≤	Report blank value for sample	
		blank concentration	concentration with a U	
		≥ CRQL* and >	No qualification required	
		blank concentration	140 quantication required	
	= CRQL*	≤ CRQL*	Report CRQL value with a U	
		> CRQL*	No qualification required	
	Gross	Detects	Report blank value for sample	
	contamination	Detects	concentration with a U	

^{* 2}x the CRQL for methylene chloride, 2-butanone and acetone.

Action Levels (ALs) should be based upon the highest concentration of contaminant determined in any blank. Do not qualify any blank with another blank. The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. No positive sample results should be reported unless the concentration of the compound in the samples exceeds the ALs:

Notes:

^{**} Qualifications based on instrument blank results affect only the sample analyzed immediately after the sample that has target compounds that exceed the calibration range or non-target compounds that exceed 100 µg/L.

High and low level blanks must be treated separately Compounds qualified "U" for blank contamination are still considered "hits" when qualifying for calibration criteria.

CONTAMINATION SOURCE/LEVEL	COMPOUND	CONC/UNITS	AL/UNITS	SQL	AFFECTED SAMPLES
				THE REAL PROPERTY.	
				1	
			PARTY NAMED IN		
	The state of the s				
The state of the s					
No.					

All criteria were met _	_X
Criteria were not mel	
and/or see below	-27

DEUTERATED MONITORING COMPOUNDS (DMCs)

Laboratory performance of individual samples is established by evaluation of surrogate spike (DMCs) recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

Table. Volatile Deuterated Monitoring Compounds (DMCs) and Recovery Limits

DMC	%R for Water Sample	%R for Soll Sample
Vinyl chloride-d3	60-135	30-150
Chloroethane-d5	70-130	30-150
1,1-Dichloroethene-d2	60-125	45-110
2-Butanone-d5	40-130	20-135
Chloroform-d	70-125	40-150
1,2-Dichloroethane-d4	70-125	70-130
Benzene-d6	70-125	20-135
1,2-Dichloropropane-d6	70-120	70-120
Toluene-d8	80-120	30-130
trans-1,3-	60-125	30-135
Dichloropropene-d4		
2-Hexanone-d5	45-130	20-135
1,1,2,2-	65-120	45-120
Tetrachloroethane-d2		
1,2-Dichlorobenzene-d4	80-120	75-120

NOTE: The recovery limits for any of the compounds listed in the above Table may be expanded at any time during the period of performance if the United States Environmental Protection Agency (EPA) determines that the limits are too restrictive.

Action:

Are recoveries for DMCs in volatile samples and blanks must be within the limits specified in the Table above.

Yes? or No?

NOTE: The recovery limits for any of the compounds listed in the Table above may be expanded at any time during the period of performance if USEPA determines that the limits are too restrictive.

List the DMCs that may fail to meet the recovery limits

Sample ID

Date

DMCs

% Recovery

Action

DMCs recoveries within the required. Other non-deuterated surrogates added to the samples within laboratory control limits.

Note: Any sample which has more than 3 DMCs outside the limits must be reanalyzed.

Action:

1. For any recovery greater than the upper acceptance limit:

- Qualify detected associated volatile target compounds as estimated high (J+).
- b. Do not qualify non-detected associated volatile target compounds.
- 2. For any recovery greater than or equal to 10%, and less than the lower acceptance limit:
 - a. Qualify detected associated volatile target compounds as estimated low (J-).
 - D. Qualify non-detected associated volatile target compounds as estimated (UJ).
- 3. For any recovery less than 10%:
 - a. Qualify detected associated volatile target compounds as estimated low (J-).
 - b. Qualify non-detected associated volatile target compounds as unusable (R).
- 4. For any recovery within acceptance limits, no qualification of the data is necessary.
- 5. In the special case of a blank analysis having DMCs out of specification, the reviewer must give special consideration to the validity of associated sample data. The basic concern is whether the blank problems represent an isolated problem with the blank alone, or whether there is a fundamental problem with the analytical process. For example, if one or more samples in the batch show acceptable DMC recoveries, the reviewer may choose to consider the blank problem to be an isolated occurrence. However, even if this judgment allows some use of the affected data, note analytical problems for Contract Laboratory COR action.
- 6. If more than three DMCs are outside of the recovery limits for Low/Medium volatiles analysis and the sample was not reanalyzed, note under Contract Problems/Non-Compliance.

Table. Deuterated Monitoring Compound (DMC) Recovery Actions for Low/Medium Volatiles Analyses – Summary

	Action				
Criteria	Detect Associated Compounds	Non-detected Associated Compounds			
%R < 10%	J-	R			
10% ≤ %R < Lower Acceptance Limit	J-	UJ			
Lower Acceptance Limit $\leq \%R \leq Upper$ Acceptance Limit	No qualification	No qualification			
%R > Upper Acceptance Limit	J+	No qualification			

TABLE. VOLATILE DEUTERATED MONITORING COMPOUNDS (DMCs) AND THE ASSOCIATED TARGET COMPOUNDS

Vinyl chloride-ds (DMC-1)	Chloroethane-ds (DMC-2)	1,1-Dichloroethene-d2 (DMC-3)
Vinyl chloride	Dichlorodifluoromethane Chloromethane Bromomethane Chloroethane	trans-1,2-Dichloroethene cis-1,2-Dichloroethene 1,1-Dichloroethene
	Carbon disulfide	
2-Butanone-ds (DMC-4)	Chloroform-d (DMC-5)	1,2-Dichloroethane-da (DMC-6)
Acetone	1,1-Dichloroethane	Trichlorofluoromethane
2-Butanone	Bromochloromethane	1,1,2-Trichloro-1,2,2-trifluoroethane
	Chloroform	Methyl acetate
	Dibromochloromethane	Methylene chloride
	Bromoform	Methyl-tert-butyl ether
		1,1,1-Trichloroethane
		Carbon tetrachloride
		1,2-Dibromoethane 1,2-Dichloroethane
Benzene-ds (DMC-7)	1,2-Dichloropropane-ds (DMC-8)	Toluene-ds (DMC-9)
Benzene	Cyclohexane	Trichloroethene
	Methylcyclohexane	Toluene
	1,2-Dichloropropane	Tetrachloroethene
	Bromodichloromethane	Ethylbenzene
		o-Xylene
		m,p-Xylene
		Styrene
		Isopropylbenzene
trans-1,3-Dichloropropene-da (DMC-10)	2-Hexanone-ds (DMC-11)	1,1,2,2-Tetrachloroethane-d2 (DMC-12)
cis-1,3-Dichloropropene	4-Methyl-2-pentanone	1,1,2,2,-Tetrachloroetlume
trans-1,3-Dichloropropene	2-Hexanone	1,2-Dibromo-3-chloropropane
1,1,2-Trichloroethane		
1,2-Dichlorobenzene-da		
(DMC-13)		~
Chlorobenzene		
1,3-Dichlorobenzene		
1,4-Dichlorobenzene 1,2-Dichlorobenzene		
1,2-Dichlorobenzene		
1,2,3-Trichlorobenzene		
1,2,0"111cmorocuzene		1 1

All criteria were met	
Criteria were not met	
and/or see belowX	

MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

NOTES:

Data for MS and MSDs will not be present unless requested by the Region.

Notify the Contract Laboratory COR if a field or trip blank was used for the MS

and MSD.

For a Matrix Spike that does not meet criteria, apply the action to only the field sample used to prepare the Matrix Spike sample. If it is clearly stated in the data validation materials that the samples were taken through incremental sampling or some other method guaranteeing the homogeneity of the sample group, then the entire sample group may be qualified.

MS/MSD Recoveries and Precision Criteria

The laboratory should use one MS and a duplicate analysis of an unspiked field sample if target analytes are expected in the sample. If target analytes are not expected, MS/MSD should be analyzed.

List the %Rs, RPD of the compounds which do not meet the criteria.

Sample ID:_FA34301-1MS/1MSD	Matrix/Level:	_Soil
Sample ID:_ FA34301-3MS/1MSD	Matrix/Level:	_Aqueous

MATRIX SPIKE/MATRIX SPIKE DUPLICATE

The QC reported here applies to the following samples: FA34301-4, FA34301-5, FA34301-6, FA34301-7

Method: SW846 8260C

Compound	FA3430 ug/kg	1-1 Q	Spike ug/kg	MS ug/kg	MS %	Spike ug/kg	MSD ug/kg	MSD %	RPD	Limits Rec/RPD
Acetone	15.0	J	288	151	47*	291	170	53*	12	61-152/27
2-Butanone (MEK)	ND		288	200	69*	291	208	71*	4	75-137/25
Carbon Disulfide	ND		57.6	43.5	75	58.3	41.6	71*	4	72-122/29
Carbon Tetrachloride	ND		57.6	45.3	79	58.3	41.7	72*	8	78-133/29
Chloroform	ND		57.6	45.5	79	58.3	40.8	70*	11	72-123/26
Cyclohexane	ND		57.6	48.1	83	58.3	42.2	72*	13	73-126/32
1,3-Dichlorobenzene	ND		57.6	53.9	94	58.3	46.7	80*	14	81-129/33
1,1-Dichloroethylene	ND		57.6	44.8	78*	58.3	41.9	72*	7	81-136/28
Freon 113	ND		57.6	40.9	71	58.3	38.2	66*	7	71-129/30
Methylcyclohexane	ND		57.6	47.2	82	58.3	43.4	74*	8	75-128/31
Methylene Chloride	16.4	В	57.6	56.0	69*	58.3	50.6	59*	10	74-137/28

Note: Results qualified in sample FA34301-1, analytes below the lower control limits qualified J or UJ. Professional judgment.

Actions:

1. No qualification of the data is necessary on MS and MSD data alone. However, using professional judgment, the validator may use the MS and MSD results in conjunction with other QC criteria and determine the need for some qualification of the data.

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

MS/MSD criteria apply only to the unspiked sample, its dilutions, and the associated MS/MSD samples:

If the % R for the affected compounds were < LL (or 70 %), qualify positive results (J) and nondetects (UJ).

If the % R for the affected compounds were > UL (or 130 %), only qualify positive results (J). If 25 % or more of all MS/MSD %R were < LL (or 70 %) or if two or more MS/MSD %Rs were < 10%, qualify all positive results (J) and reject nondetects (R).

A separate worksheet should be used for each MS/MSD pair.

^{*} QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.

^{*} If QC limits are not available, use limits of 70 – 130 %.

All criteria were met _	_X	
Criteria were not met		
and/or see below	10	

LABORATORY CONTROL SAMPLE (LCS) ANALYSIS

This data is generated to determine accuracy of the analytical method for various matrices.

1. LCS Recoveries Criteria

Where LCS spiked with the same analyte at the same concentrations as the MS/MSD? Yes or No. If no make note in data review memo.

List the %R of compounds which do not meet the criteria

LCS ID	COMPOUND	% R	QC LIMIT				
Recoveries_(blank_spike)_within_laboratory_control_limits							
		- 1					
		3770 5					

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 70 130 %.

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	j
Nondetects results	R	Accept

All analytes in the associated sample results are qualified for the following criteria.

If 25 % of the LCS recoveries were < LL (or 70 %), qualify all positive results (j) and reject nondetects (R).

If two or more LCS were below 10 %, qualify all positive results as (J) and reject nondetects (R).

2. Frequency Criteria:

Where LCS analyzed at the required frequency and for each matrix? <u>Yes</u> or No. If no, the data may be affected. Use professional judgment to determine the severity of the effect and qualify data accordingly. Discuss any actions below and list the samples affected.

		All criteria were metN/A Criteria were not met and/or see below
IX.	FIELD/LABORATORY DUPLICATE PRECISION	
	Sample IDs:	Matrix:

Field/laboratory duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

The project QAPP should be reviewed for project-specific information.

NOTE: In the absence of QAPP guidance for validating data from field duplicates, the following action will be taken.

Identify which samples within the data package are field duplicates. Estimate the relative percent difference (RPD) between the values for each compound. Use professional judgment to note large RPDs (> 50%) in the narrative.

COMPOUND	SQL	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION		
No field/laboratory duplicate analyzed with this data package. MS/MSD % recoveries RPD used to assess precision. RPD within required criteria, < 50 % for target analytes detected in sample and							
duplicate.							

Actions:

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria. For organics, only the sample and duplicate will be qualified.

If an RPD cannot be calculated because one or both of the sample results is not detected, the following actions are suggested based on professional judgment:

If one sample result is not detected and the other is greater than 5x the SQL qualify (J/UJ).

If one sample value is not detected and the other is greater than 5x the SQL and the SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is less than 5x, use professional judgment to determine if qualification is appropriate.

If both sample and duplicate results are not detected, no action is needed.

All criteria were met _	_X	
Criteria were not met		
and/or see below		

X. INTERNAL STANDARD PERFORMANCE

The assessment of the internal standard (IS) parameter is used to assist the data reviewer in determining the condition of the analytical instrumentation.

DATE SAMPLE ID IS OUT IS AREA ACCEPTABLE ACTION RANGE

Internal standard area counts within the required criteria.

Action:

- If an internal standard area count for a sample or blank is greater than 200.0% of the area for the associated standard (opening CCV or mid-point standard from initial calibration) (see Table below):
 - a. Qualify detects for compounds quantitated using that internal standard as estimated low (J-).
 - b. Do not qualify non-detected associated compounds.
- 2. If an internal standard area count for a sample or blank is less than 20.0% of the area for the associated standard (opening CCV or mid-point standard from initial calibration):
 - a. Qualify detects for compounds quantitated using that internal standard as estimated high (J+).
 - b. Qualify non-detected associated compounds as unusable (R).
- 3. If an internal standard area count for a sample or blank is greater than or equal to 20.0%, and less than or equal to 200% of the area for the associated standard opening CCV or mid-point standard from initial calibration, no qualification of the data is necessary.
- 4. If an internal standard RT varies by more than 30.0 seconds: Examine the chromatographic profile for that sample to determine if any false positives or negatives exist. For shifts of a large magnitude, the reviewer may consider partial or total rejection of the data for that sample fraction. Detects should not need to be qualified as unusable (R) if the mass spectral criteria are met.
- 5. If an internal standard RT varies by less than or equal to 30.0 seconds, no qualification of the data is necessary.

Note: Inform the Contract Laboratory Program Project Officer (CLP PO) if the internal standard performance criteria are grossly exceeded. Note in the Data Review Narrative potential effects on the data resulting from unacceptable internal standard performance.

- 6. If required internal standard compounds are not added to a sample or blank, qualify detects and non-detects as unusable (R).
- 7. If the required internal standard compound is not analyzed at the specified concentration in a sample or blank, use professional judgment to qualify detects and non-detects.

Table. Internal Standard Actions for Low/Medium Volatiles Analyses - Summary

	Act	lon
Criteria	Detected Associated Compounds*	Non-detected Associated Compounds*
Area counts > 200% of 12-hour standard (opening CCV or mid-point standard from initial calibration)	J-	No qualification
Area counts < 20% of 12-hour standard (opening CCV or mid-point standard from initial calibration)	J+	R
Area counts $\geq 50\%$ but $\leq 200\%$ of 12-hour standard (opening CCV or mid-point standard from initial calibration)	No qual	ification
RT difference > 30.0 seconds between samples and 12-hour standard (opening CCV or mid-point standard from initial calibration)	R **	R
RT difference ≤ 30.0 seconds between samples and 12-hour standard (opening CCV or mid-point standard from initial calibration)	No qual	ification

^{*} For volatile compounds associated to each internal standard, see TABLE - VOLATILE TARGET ANALYTES, DEUTERATED MONITORING COMPOUNDS WITH ASSOCIATED INTERNAL STANDARDS FOR QUANTITATION in SOM02.2, Exhibit D, available at: http://www.epa.gov/superfund/programs/clp/download/som/som22d.pdf ** Detects should not need to be qualified as unusable (R) if the mass spectral criteria are met.

Action:

		All criteria were metX Criteria were not met and/or see below
TARGET COM	POUND IDENTIFICATION	
Criteria:		
	1 7 1	pounds within ±0.06 RRT units of the standard or mid-point standard from the initial calibration]. <u>Yes</u> ? or No?
List compounds	not meeting the criteria described above:	
Sample ID	Compounds	Actions
-		
spectrum from	the associated calibration standard (or st match according to the following criteria. All ions present in the standard mass si must be present in the sample spectrum. The relative intensities of these ions must sample spectra (e.g., for an ion with an accorresponding sample ion abundance mulons present at greater than 10% in the	pectrum at a relative intensity greater than 10% st agree within ±20% between the standard and abundance of 50% in the standard spectrum, the
List compounds	s not meeting the criteria described above:	
Sample ID	Compounds	Actions
		11
0.		

- 1. The application of qualitative criteria for GC/MS analysis of target compounds requires professional judgment. It is up to the reviewer's discretion to obtain additional information from the laboratory. If it is determined that incorrect identifications were made, qualify all such data as unusable (R).
- 2. Use professional judgment to qualify the data if it is determined that cross-contamination has occurred.
- 3. Note in the Data Review Narrative any changes made to the reported compounds or concerns regarding target compound identifications. Note, for Contract Laboratory COR action, the necessity for numerous or significant changes.

TENTATIVELY IDENTIFIED COMPOUNDS (TICS)

NOTE: Tentatively identified compounds should only be evaluated when requested by a party from outside of the Hazardous Waste Support Section (HWSS).

*		-	-	\sim	
is	•	- 1	ш	C	~
15		- 1			

Sample ID	Compound	Sample ID	Compound
		=======================================	

Action:

- 1. Qualify all TIC results for which there is presumptive evidence of a match (e.g. greater than or equal to 85% match) as tentatively identified (NJ), with approximated concentrations. TICs labeled "unknown" are qualified as estimated (J).
- 2. General actions related to the review of TIC results are as follows:
 - a. If it is determined that a tentative identification of a non-target compound is unacceptable, change the tentative identification to "unknown" or another appropriate identification, and qualify the result as estimated (J).
 - b. If all contractually-required peaks were not library searched and quantitated, the Region's designated representative may request these data from the laboratory.
- 3. In deciding whether a library search result for a TIC represents a reasonable identification, use professional judgment. If there is more than one possible match, report the result as "either compound X or compound Y". If there is a lack of isomer specificity, change the TIC result to a nonspecific isomer result (e.g., 1,3,5-trimethyl benzene to trimethyl benzene isomer) or to a compound class (e.g., 2-methyl, 3-ethyl benzene to a substituted aromatic compound).

- 4. The reviewer may elect to report all similar compounds as a total (e.g., all alkanes may be summarized and reported as total hydrocarbons).
- 5. Target compounds from other fractions and suspected laboratory contaminants should be marked as "non-reportable".
- 6. Other Case factors may influence TIC judgments. If a sample TIC match is poor, but other samples have a TIC with a valid library match, similar RRT, and the same ions, infer identification information from the other sample TIC results.
- 7. Note in the Data Review Narrative any changes made to the reported data or any concerns regarding TIC identifications.
- 8. Note, for Contract Laboratory COR action, failure to properly evaluate and report TICs

All criteria were met _	X_	
Criteria were not met		
and/or see below	_	

SAMPLE QUANTITATION AND REPORTED CONTRACT REQUIRED QUANTITATION LIMITS (CRQLS)

Action:

- 1. If any discrepancies are found, the Region's designated representative may contact the laboratory to obtain additional information that could resolve any differences. If a discrepancy remains unresolved, the reviewer must use professional judgment to decide which value is the most accurate. Under these circumstances, the reviewer may determine that qualification of data is warranted. Note in the Data Review Narrative a description of the reasons for data qualification and the qualification that is applied to the data.
- 2. For non-aqueous samples, in the percent moisture is less than 70.0%, no qualification of the data is necessary. If the percent moisture is greater than or equal to 70.0% and less than 90.0%, qualify detects as estimated (J) and non-detects as approximated (UJ). If the percent moisture is greater than or equal to 90.0%, qualify detects as estimated (J) and non-detects as unusable (R) (see Table below).
- 3. Note, for Contract Laboratory COR action, numerous or significant failures to accurately quantify the target compounds or to properly evaluate and adjust CRQLs.
- 4. Results between MDL and CRQL should be qualified as estimated "J".
- 5. Results < MDL should be reported at the CRQL and qualified "U". MDLs themselves are not reported.

Table. Percent Moisture Actions for Low/Medium Volatiles Analysis for Non-Aqueous Samples

Criteria		Action
	Detected Associated Compounds	Non-detected Associated Compounds
% Moisture < 70.0	No	qualification
70.0 < % Moisture < 90.0	J	UJ
% Moisture > 90.0	J	R

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

Sample ID

FA34301-1

MTBE

RF = 1.020

[] = (52872)(50)/(1.020)(1120223) = 2.31 ppb Ok

		Criteria were metX Criteria were not met and/or see below
B.	Percent Solids	
	List samples which have ≥ 70 % solids	
		

QUANTITATION LIMITS

A. Dilution performed

SAMPLE ID	DILUTION FACTOR	REASON FOR DILUTION
FA34301-3	20 X	Tert-Butyl Alcohol over calibration range

OTHE	R ISSUES	3	All critena were metX Criteria were not met and/or see below
A.	System Perfor	mance	
List sa	mples qualified	based on the degradation of system pe	rformance during simple analysis:
Sample	e ID =======	Comments	Actions
_No_d	egradation_of_s	ystem_performance_observed	
Action:	····		
during	sample analys		ned that system performance has degraded Program COR any action as a result of ed the data.
B.	Overail Assess	ment of Data	
List sa	mples qualified	based on other issues:	
Sample	e ID =======	Comments	Actions
		_observed_that_require_qualification_ on_purposes	of_the_dataResults_are_valid_andcan_
Action:			
1.		al judgment to determine if there is any Quality Control (QC) criteria previously di	need to qualify data which were not qualified scussed.
2.	Write a brief na Contract Labor (SDG) Narrativ available, the	arrative to give the user an indication of to ratory COR the action, any inconsistence. If sufficient information on the inter	the analytical limitations of the data. Inform the y of the data with the Sample Delivery Group nded use and required quality of the data is nt of the usability of the data within the given

EXECUTIVE NARRATIVE

SDG No:

FA34302

Laboratory:

Accutest, Florida

Analysis:

SW846-8260C

Number of Samples:

11

Location:

BMSMC - Building 5 Area

Humacao, PR

SUMMARY:

Eleven (11) samples were analyzed for volatile organic compounds (VOCs) by method SW846-8260C. The sample results were assessed according to USEPA data validation guidance documents in the following order of precedence: USEPA Hazardous Waste Support Section SOP No. HW-33A Revision 0 SOM02.2. Low/Medium Volatile Data Validation. July, 2015. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted. Results are valid and can be used for decision making purposes.

Critical issues:

None

Major:

None

Minor:

None

Critical findings:

None None

Major findings: Minor findings:

1. Acetone initial calibration verification was outside the method performance criteria but within the guidance validation document criteria. No action taken.

2. Methylene chloride detected in method blank below the reporting limit. Methylene chloride detected in sample FA34302-7 at a concentration below the reporting limit. Laboratory qualified the result as (BJ), no further qualification performed.

Acetone and tert-butyl alcohol detected in sample FA34302-2 (equipment blank) at a concentration below the reporting limit. No action taken,

4. Several analytes recovered below the laboratory lower control limits but within generally acceptable control limits in sample FA34302-1MS/-1MSD (QC sample for the batch) but within generally acceptable control limits. No action taken, MS/MSD criteria apply to the unspiked sample.

COMMENTS:

Results are valid and can be used for decision making purposes.

Reviewers Name:

Rafael Infante

Chemist License 1888

Signature:

Date:

June 11, 2016

SAMPLE ORGANIC DATA SAMPLE SUMMARY

Sample ID: FA34302-1

Sample location: BMSMC Building 5 Area Sampling date: 5/25/2016

Matrix: Groundwater

cis-1,2-Dichloroethene	1,1-Dichloroethene	1,2-Dichloroethane	1,1-Dichloroethane	1,4-Dichlorobenzene	1,3-Dichlorobenzene	1,2-Dichlorobenzene	Dichlorodifluoromethane	1,2-Dibromoethane	1,2-Dibromo-3-chloropropane	Dibromochloromethane	Cyclohexane	Chloroform	Chloroethane	Chlorobenzene	Carbon tetrachloride	Carbon disulfide	2-Butanone (MEK)	Bromoform	Bromodichloromethane	Bromochloromethane	Benzyl Chloride	Benzene	Acetone	Analyte Name	
1.0	1.0	1.0	1.0	1.0	1.0	1.0	2.0	2.0	5.0	1.0	4.5	1.0	2.0	1.0	1.0	2.0	0.35	1.0	1.0	1.0	1.0	1.0	25	Result	0 0 0
ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	⊔g/L	ug/L	ug/L	ug/L	ug/L		
1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	Dilution Factor Lab Flag	
ı	•	4	•	t	t	r	•	•	•	1	ı	ı	ı	•	1	1	_	1	t	•	•	1	1	Lab Flag	
C	C	C	⊂	C	C	C	C	C	_	C	1	C	C	C	_	_	٤	_	_	C	C	_	_	Validation	
Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Reportable	

Trichlorofluoromethane 1,2,4-Trimethylbenzene Vinyl chloride m,p-Xylene o-Xylene	1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene	1,1,2,2-Tetrachloroethane Tetrachloroethene Tetrahydrofuran Toluene	Styrene Tert-Amyl Alcohol Tert-Butyl Alcohol	Methylcyclohexane Methylene chloride 4-Methyl-2-pentanone(MIBK) Methyl Tert Butyl Ether	Isopropylbenzene p-Isopropyltoluene Methyl Acetate Methyl Bromide Methyl Chloride	trans-1,2-Dichloroethene 1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene Ethylbenzene Freon 113 2-Hexanone
				/		
2.0 1.0 1.0 2.0 1.0	2.0 2.0 1.0 1.0	1.0 1.0 2.5	1.0 20 20	1.0 5.0 5.0 24.8	1.0 1.0 20 2.0 2.0	1.0 1.0 1.0 1.0 1.0
n8/L n8/L n8/L	ng/L ng/L	ng/L ng/L	ng/L ng/L	ng/L	n8/r n8/r n8/r	n8/r n8/r n8/r n8/r
1.0 1.0 1.0	1.0	1.0 1.0 1.0	1.0 1.0 1.0	1.0 1.0 1.0	1.0 1.0 1.0	1.0 1.0 1.0 1.0 1.0
6 9 9 6 9	a ka res		1 1 1		1 1 1 1	
C C C C C	cccc	c <u>E</u> c c	c c c		c c c c S	cccccc
	Yes Yes	Yes Yes Yes	Yes Yes	Yes Yes Yes	Yes Yes Yes Yes	Yes Yes Yes Yes Yes

Sample ID: FA34302-2

Sample location: BMSMC Building 5 Area Sampling date: 5/25/2016

Matrix: AQ - Equipment blank

1,2-Dichloropropane	trans-1,2-Dichloroethene	cis-1,2-Dichloroethene	1,1-Dichloroethene	1,2-Dichloroethane	1,1-Dichloroethane	1,4-Dichlorobenzene	1,3-Dichlorobenzene	1,2-Dichlorobenzene	Dichlorodifluoromethane	1,2-Dibromoethane	1,2-Dibromo-3-chloropropane	Dibromochloromethane	Cyclohexane	Chloroform	Chloroethane	Chlorobenzene	Carbon tetrachloride	Carbon disulfide	2-Butanone (MEK)	Bromoform	Bromodichloromethane	Bromochloromethane	Benzyl Chloride	Benzene	Acetone	Analyte Name	MELIOC
1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	2.0	2.0	5.0	1.0	1.0	1.0	2.0	1,0	1.0	2.0	5.0	1.0	1.0	1.0	1.0	1.0	16.7	Result	VIETTOUT 0200C
ug/L	ug/L	ug/L	ug/L	ug/L	⊔g/L	ug/L	ug/L	ug/L	ug/L	J∕8n	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	Units Di	
1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	Dilution Factor	
1	1	1	1	1	1	1	•	•	1	1		1	1	1	1		ı	t	t	1	1	ı	1	•	J	· Lab Flag	
C	C	C	C	C	C	_	_	C	_	_	C	C	C	C	C	_	C	C	_	_	C	C	C	_	9	Validation	
Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Validation Reportable	

Yes Yes	- - - -	,C - 10 3	1.0	ug/L	2.0 1.0	m,p-Xylene o-Xylene
Ye Ye	c c	ı r	1.0 1.0	ng/L	1.0	Vinyl chloride
Yes	C		1.0	ug/L	2.0	Trichlorofluoromethane
Ύe	C	i.	1.0	ug/L	1.0	Trichloroethene
Ύe	C	ri -	1.0	ug/L	1.0	1,1,2-Trichloroethane
Ϋ́e	_	ı	1.0	ug/L	1.0	1,1,1-Trichloroethane
Ύe	C		1.0	ug/L	2.0	1,2,4-Trichlorobenzene
Ϋ́e	_	1	1.0	ug/L	2.0	1,2,3-Trichlorobenzene
Ύe	_		1.0	ug/L	1.0	Toluene
Ϋ́e	_	•	1.0	ug/L	5.0	Tetrahydrofuran
Ύe	C	•	1.0	ug/L	1.0	Tetrachloroethene
Ύe	_		1.0	ug/L	1.0	1,1,2,2-Tetrachloroethane
Ύe	⊆	_	1.0	ug/L	16.5	Tert-Butyl Alcohol
Ύe	C		1.0	ug/L	20	Tert-Amyl Alcohol
Ϋ́e	_	i	1.0	ug/L	1.0	Styrene
Ϋ́	C	,	1.0	ug/L	1.0	Methyl Tert Butyl Ether
Ϋ́	_		1.0	ug/L	5.0	4-Methyl-2-pentanone(MIBK)
Υ ₆	C	1	1.0	ug/L	5.0	Methylene chloride
Y e	–		1.0	J/Bn	1.0	Methylcyclohexane
⋌	<u>_</u>	,	1.0	ug/L	2.0	Methyl Chloride
~	_	ı	1.0	⊔g/L	2.0	Methyl Bromide
	- T	ų,	1.0	ug/L	20	Methyl Acetate
	_		1.0	ug/L	1.0	p-Isopropyltoluene
≾	C	τ.	1.0	ug/L	1.0	Isopropylbenzene
≾	C		1.0	ug/L	10	2-Hexanone
≺	C	, e	1.0	ug/L	1.0	Freon 113
<u>~</u>	C	•	1.0	J∕Bn	1.0	Ethylbenzene
≺	C	,	1.0	ug∕L	1.0	trans-1,3-Dichloropropene
≺	C	ı	1.0	ug/L	1.0	cis-1,3-Dichloropropene

Sample ID: FA34302-3

Sample location: BMSMC Building 5 Area Sampling date: 5/25/2016

Matrix: AQ - Equipment Blank

1,2-Dichloropropane	trans-1,2-Dichloroethene	cis-1,2-Dichloroethene	1,1-Dichloroethene	1,2-Dichloroethane	1,1-Dichloroethane	1,4-Dichlorobenzene	1,3-Dichlorobenzene	1,2-Dichlorobenzene	Dichlorodifluoromethane	1,2-Dibromoethane	1,2-Dibromo-3-chloropropane	Dibromochloromethane	Cyclohexane	Chloroform	Chloroethane	Chlorobenzene	Carbon tetrachloride	Carbon disulfide	2-Butanone (MEK)	Bromoform	Bromodichloromethane	Bromochloromethane	Benzyl Chloride	Benzene	Acetone	Analyte Name	ואוכי ווער מבטער
1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	2.0	2.0	5.0	1.0	1.0	1.0	2.0	1.0	1.0	2.0	5.0	1.0	1.0	1.0	1.0	1.0	25	Result	, 02000
ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug∕L	ug/L	⊔g/L	ug∕L	J/Bn	ug/L	ug/L	ug/L	ug/L	ug/L	⊔g/L	J/Bn	ug/L	ug/L	ug/L	Units Dil	
1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	Dilution Factor	
•	•	1	ı	•		1	,		1	1	1	r			1	,	1	ı	•	•	1	1	ı	•	a	Lab Flag	
C	_	C	C	C	C	C	C	C	C	<u>_</u>	C	C	C	<u>_</u>	<u>_</u>	C	_	C	C	C	C	_	C	<u>_</u>	C	Validation	
Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Reportable	

o-Xylene	m,p-Xylene	Vinyl chloride	1,2,4-Trimethylbenzene	Trichlorofluoromethane	Trichloroethene	1,1,2-Trichloroethane	1,1,1-Trichloroethane	1,2,4-Trichlorobenzene	1,2,3-Trichlorobenzene	Toluene	Tetrahydrofuran	Tetrachloroethene	1,1,2,2-Tetrachioroethane	Tert-Butyl Alcohol	Tert-Amyl Alcohol	Styrene	Methyl Tert Butyl Ether	4-Methyl-2-pentanone(MIBK)	Methylene chloride	Methylcyclohexane	Methyl Chloride	Methyl Bromide	Methyl Acetate	p-isopropyitoluene	Isopropyibenzene	2-Hexanone	Freon 113	Ethylbenzene	trans-1,3-Dichloropropene	cis-1,3-Dichloropropene
1.0	2.0	1.0	1.0	2.0	1.0	1.0	1.0	2.0	2.0	1.0	5.0	1.0	1.0	20	20	1.0	1.0	5.0	5.0	1.0	2.0	2.0	20	1.0	1.0	10	1.0	1.0	1.0	1.0
ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	1/Bn	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	⊔g/L	ug/L	ug/L	ug/L	ug/L	ug/L
1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
,	ı	•	r	·	•			ï		,				ı	1	į	j.	e	,	ĸ			c		,	4.5	ı	,	ı	ī
C	C	C	C	C	C	C	C	_	<u>_</u>	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	_	C
Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

.

Sample ID: FA34302-4

Sample location: BMSMC Building 5 Area Sampling date: 5/25/2016 Matrix: Soil

Analyta Nama	Bosult	7		1 1 1	11.11.11.1	
Acetone	ונכשמונ	011163	ייב //יב אומנוטוו רמכנטו במט רומצ סוווניז שומנוטוו רמכנטו במט רומצ	PPL CIPS	railou III	vebol rable
Acetone	58	ug/kg	1.0	ı	C	Yes
Benzene	5.8	ug/kg	1.0	1	C	Yes
Benzyl Chloride	5.8	ug/kg	1.0	,	C	Yes
Bromochloromethane	5.8	ug/kg	1.0	•	C	Yes
Bromodichloromethane	5.8	ug/kg	1.0	t	_	Yes
Bromoform	5.8	ug/kg	1.0	ı	C	Yes
2-Butanone (MEK)	29	ug/kg	1.0		_	Yes
Carbon disulfide	5.8	ug/kg	1.0	1	_	Yes
Carbon tetrachloride	5.8	ug/kg	1.0		⊏	Yes
Chlorobenzene	5.00	ug/kg	1.0	r	C	Yes
Chloroethane	5.8	ug/kg	1.0		C	Yes
Chloroform	5.8	ug/kg	1.0	ı	_	Yes
Cyclohexane	5.8	ug/kg	1.0	•	C	Yes
Dibromochloromethane	5.8	ug/kg	1.0	1	C	Yes
1,2-Dibromo-3-chloropropane	5.8	ug/kg	1.0		_	Yes
1,2-Dibromoethane	5.8	ug/kg	1.0	1	C	Yes
Dichlorodifluoromethane	5.8	ug/kg	1.0	ı	C	Yes
1,2-Dichlorobenzene	5.8	ug/kg	1.0		C	Yes
1,3-Dichlorobenzene	; ; ;	ug/kg	1.0	ı	C	Yes
1,4-Dichlorobenzene	5.8	ug/kg	1.0	1	C	Yes
1,1-Dichloroethane	5,8	ug/kg	1.0	ı	⊂	Yes
1,2-Dichloroethane	5.8	ug/kg	1.0		C	Yes
1,1-Dichloroethene	5.8	ug/kg	1.0	•	C	Yes
cis-1,2-Dichloroethene	5.8	ug/kg	1.0	ı	C	Yes
trans-1,2-Dichloroethene	5.8	ug/kg	1.0	ı	C	Yes

o-Xylene	Vinyl chloride	1,2,4-Trimethylbenzene	Trichlorofluoromethane	Trichloroethene	1,1,2-Trichloroethane	1,1,1-Trichloroethane	1,2,4-Trichlorobenzene	1,2,3-Trichlorobenzene	Toluene	Tetrahydrofuran	Tetrachloroethene	1,1,2,2-Tetrachloroethane	Tert-Butyl Alcohol	Tert-Amyl Alcohol	Styrene	Methyl Tert Butyl Ether	4-Methyl-2-pentanone(MIBK)	Methylene chloride	Methylcyclohexane	Methyl Chloride	Methyl Bromide	Methyl Acetate	p-Isopropyitoluene	Isopropylbenzene	2-Hexanone	Freon 113	Ethylbenzene	trans-1,3-Dichloropropene	cis-1,3-Dichloropropene	1,2-Dichloropropane
5.8	2.80	5.8	5.8	5.8	5.8	5.8	5.8	5.8	5.8	12	5,8	5.8	58	58	5.8	5.8	29	12	2.8	5.8	5.8	29	5.8	5.8	29	5.8	5.8	5.8	5.8	5.8
ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
		1.4		c			,	a	ж.	1.				,	ř.	Si.	x	ř.	1	r	1			1	1	ř.	eş.	,	C.	
C C	: ⊂	C	C	C	C	⊂	C	C	C	C	_	C	C	C	C	C	<u> </u>	C	C	C	C	C	<u> </u>	C	C	C	C	_	C	C
Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Sample ID: FA34302-5
Sample location: BMSMC Building 5 Area
Sampling date: 5/25/2016
Matrix: Soil

trans-1,2-Dichloroethene	cis-1,2-Dichloroethene	1,1-Dichloroethene	1,2-Dichloroethane	1,1-Dichloroethane	1,4-Dichlorobenzene	1,3-Dichlorobenzene	1,2-Dichlorobenzene	Dichlorodifluoromethane	1,2-Dibromoethane	1,2-Dibromo-3-chloropropane	Dibromochloromethane	Cyclohexane	Chloroform	Chloroethane	Chlorobenzene	Carbon tetrachloride	Carbon disulfide	2-Butanone (MEK)	Bromoform	Bromodichloromethane	Bromochloromethane	Benzyl Chloride	Benzene	Acetone	Analyte Name	
5.4	5.4	5.4	5.4	5.4	5.4	5.4	5.4	5.4	5.4	5.4	5.4	5.4	5.4	5.4	5.4	5.4	5.4	27	5.4	5.4	5.4	5.4	5.4	54	Result	-
ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	Units Dil	
1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	Units Dilution Factor Lab Flag	
ı	•	•	ı		1		1	1	1		1	1	ř	•		•	1		t	•		1	1	ı	Lab Flag	
C	C	C	C	C	_	C	C	C	C	C	C	<u> </u>	C	_	C	_	C	<u>_</u>	C	_	⊂	_	C	C	Validation	
Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Reportable	

Vinyl chloride m,p-Xylene o-Xylene	1,2,4-Trimethylbenzene	Trichlorofluoromethane	Trichloroethene	1,1,2-Trichloroethane	1,1,1-Trichloroethane	1,2,4-Trichlorobenzene	1,2,3-Trichlorobenzene	Toluene	Tetrahydrofuran	Tetrachloroethene	1,1,2,2-Tetrachioroethane	Tert-Butyl Alcohol	Tert-Amyl Alcohol	Styrene	Methyl Tert Butyl Ether	4-Methyl-2-pentanone(MIBK)	Methylene chloride	Methylcyclohexane	Methyl Chloride	Methyl Bromide	Methyl Acetate	p-IsopropyItoluene	Isopropylbenzene	2-Hexanone	Freon 113	Ethylbenzene	trans-1,3-Dichloropropene	cis-1,3-Dichloropropene	1,2-Dichloropropane
5.4 11 5.4	5.4	5.4	5.4	5.4	5.4	5.4	5.4	5.4	11	5.4	5.4	54	54	5.4	5.4	27	11	5.4	5.4	5.4	27	5.4	5.4	27	5.4	5.4	5.4	5.4	5.4
ug/kg ug/kg ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
1.0 1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
	9	į		1	E	1			,		e.	,	r	1		ı	1	,	ě.	i	÷	ı	_	ı	ī	ī	i	1	1
⊆ , ⊂	C	C	<u>_</u>	<u>_</u>	C	C	_	C	C	C	C	_	C	⊂	_	_	C	C	C	C	_	_	2	C	C	•		_	C
Yes Yes Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

.

Sample ID: FA34302-6

Sample location: BMSMC Building 5 Area Sampling date: 5/25/2016

Matrix: Soil

m,p-Xylene o-Xylene	Vinyl chloride	1,2,4-Trimethylbenzene	Trichlorofluoromethane	Trichloroethene	1,1,2-Trichloroethane	1,1,1-Trichloroethane	1,2,4-Trichlorobenzene	1,2,3-Trichlorobenzene	Toluene	Tetrahydrofuran	Tetrachloroethene	1,1,2,2-Tetrachloroethane	Tert-Butyl Alcohol	Tert-Amyl Alcohol	Styrene	Methyl Tert Butyl Ether	4-Methyl-2-pentanone(MIBK)	Methylene chloride	Methylcyclohexane	Methyl Chloride	Methyl Bromide	Methyl Acetate	p-IsopropyItoluene	Isopropylbenzene	2-Hexanone	Freon 113	Ethylbenzene	trans-1,3-Dichloropropene	cis-1,3-Dichloropropene	1,2-Dichloropropane
680 340	340	340	340	340	340	340	340	340	340	680	340	340	3400	3400	340	340	1700	680	340	340	340	1700	340	340	1700	340	340	340	340	340
ug/kg ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
3 C 3	r	ji.	T	9		c	a	ı.	1	¥	r	1	ï	r	1	ì	ř.	'n		1	ï	ï	9		6	, i			•	
C C	C	C	C	<u> </u>	C	C	C	C	C	C	C	C	C	⊂	C	C	C	C	C	C	C	–	_	_	C	C	_	_	C	C
Yes Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Sample ID: FA34302-7

Sample location: BMSMC Building 5 Area Sampling date: 5/25/2016
Matrix: Soil

A 333 124		-		!		
Vilai Vita Marrie	Vesuit	יייייייייייייייייייייייייייייייייייייי	Office Dilution Factor Lab Flag	Rela de	validation	Reportable
Acetone	16.1	ug/kg	1.0	_	⊆	Yes
Benzene	5.8	ug/kg	1.0		C	Yes
Benzyl Chloride	J. 80	ug/kg	1.0	ı	⊂	Yes
Bromochloromethane	5.8	ug/kg	1.0		C	Yes
Bromodichloromethane	5.8	ug/kg	1.0	1	C	Yes
Bromoform	5.8	ug/kg	1.0	ı	_	Yes
2-Butanone (MEK)	29	ug/kg	1.0	ı	_	Yes
Carbon disulfide	5.8	ug/kg	1.0	•	C	Yes
Carbon tetrachloride	5.8	ug/kg	1.0		C	Yes
Chlorobenzene	5.80	ug/kg	1.0	1	C	Yes
Chloroethane	5.8	ug/kg	1.0	1	C	Yes
Chloroform	5.8	ug/kg	1.0	•	C	Yes
Cyclohexane	5.8	ug/kg	1.0	J	⊆	Yes
Dibromochloromethane	:00 :10	ug/kg	1.0	ı	_	Yes
1,2-Dibromo-3-chloropropane	5.8	ug/kg	1.0	r	<u>_</u>	Yes
1,2-Dibromoethane	5.8	ug/kg	1.0	1	C	Yes
Dichlorodifluoromethane	5.8	ug/kg	1.0	1	C	Yes
1,2-Dichlorobenzene	5.8	ug/kg	1.0	ι	C	Yes
1,3-Dichlorobenzene	5.8	ug/kg	1.0	1	_	Yes
1,4-Dichlorobenzene	5.8	ug/kg	1.0	1	C	Yes
1,1-Dichloroethane	5,8	ug/kg	1.0	•	_	Yes
1,2-Dichloroethane	5.8	ug/kg	1.0	1	C	Yes
1,1-Dichloroethene	5.00	ug/kg	1.0	1	_	Yes
cis-1,2-Dichloroethene	5.8	ug/kg	1.0	ı	_	Yes
trans-1,2-Dichloroethene	5,8	ug/kg	1.0	,	_	Yes

o-Xylene	m,p-Xylene	Vinyl chloride	1,2,4-Trimethylbenzene	Trichlorofluoromethane	Trichloroethene	1,1,2-Trichloroethane	1,1,1-Trichloroethane	1,2,4-Trichlorobenzene	1,2,3-Trichlorobenzene	Toluene	Tetrahydrofuran	Tetrachloroethene	1,1,2,2-Tetrachloroethane	Tert-Butyl Alcohol	Tert-Amyl Alcohol	Styrene	Methyl Tert Butyl Ether	4-Methyl-2-pentanone(MIBK)	Methylene chloride	Methylcyclohexane	Methyl Chloride	Methyl Bromide	Methyl Acetate	p-IsopropyItoluene	Isopropylbenzene	2-Hexanone	Freon 113	Ethylbenzene	trans-1,3-Dichloropropene	cis-1,3-Dichloropropene	1,2-Dichloropropane
5.8 ug	12 ug	5.8 ug	5.8 ug	5.8 ug	5.8 ug	5.8 ug	5.8 ug	5.8 ug	5.8 ug	5.8 ug	12 ug	5.8 ug	5.8 ug	58 ug	58 u€	5.8 ug	5.8 ug	29 սք	8.2 ug	5.8 ug	5.8 ug	5.8 ug	29 սք	5.8 ug	5.8 ug	29 ug	5.8 ug	5.8 ug	5.8 սք	5.8 ug	5.8 ug
ug/kg 1	ug/kg 1	ug/kg 1	ug/kg 1	ug/kg 1	ug/kg 1	ug/kg 1	ug/kg 1	ug/kg 1	ug/kg 1	ug/kg 1	ug/kg 1	ug/kg 1	ug/kg 1	ug/kg 2	ug/kg 1	ug/kg 1	ug/kg 1	ug/kg 1	ug/kg 1	ug/kg 1	ug/kg 1	ug/kg 1	ug/kg 1	ug/kg 1	ug/kg 1	ug/kg 1	ug/kg 1	ug/kg 1	ug/kg 1	ug/kg 1	ug/kg 1
0	.0	1.0	1.0	.0	1.0	.0	1.0	.0	1.0	1.0	1.0	1.0	1.0	2.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	L.O	1.0	1.0	1.0	1.0	1.0	1.0	L.O	1.0
3	•	į.	1	•	•	•	•	,	•	٠	_	•	0		1	1	1	ľ	JВ	1	Ü	i i	•	•	•	1	1	1	1	1	1
C					<u>_</u>	C	C				2		C	1		_	ı	_		<u>_</u>	C	C	_		_		_	C	_	C	C
Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Sample ID: FA34302-8

Sample location: BMSMC Building 5 Area Sampling date: 5/25/2016

Matrix: AQ - Equipment blank

	אורוזוסט. מלסמכ					
Analyte Name	Result	Units D	Dilution Factor Lab Flag	Lab Flag	Validation	Reportable
Acetone	25	ug/L	1.0	1	C	Yes
Benzene	1.0	ug/L	1.0	1	C	Yes
Benzyl Chloride	2.0	ug/L	1.0	1	C	Yes
Bromochloromethane	1.0	ug/L	1.0	ı	C	Yes
Bromodichloromethane	1.0	ug/L	1.0	1	C	Yes
Bromoform	1.0	ug/L	1.0		C	Yes
2-Butanone (MEK)	5.0	ug/L	1.0	1	C	Yes
Carbon disulfide	2.0	ug/L	1.0	ı	C	Yes
Carbon tetrachloride	1.0	ug/L	1.0	1	C	Yes
Chlorobenzene	1.0	ug/L	1.0	•	C	Yes
Chloroethane	2.0	ug/L	1.0	•	C	Yes
Chloroform	1.0	ug/L	1.0	1	_	Yes
Cyclohexane	1.0	ug/L	1.0	1	C	Yes
Dibromochloromethane	1.0	ug/L	1.0		C	Yes
1,2-Dibromo-3-chloropropane	5.0	ug/L	1.0	1	_	Yes
1,2-Dibromoethane	2.0	ug/L	1.0	1	_	Yes
Dichlorodifluoromethane	2.0	ug/L	1.0	•	_	Yes
1,2-Dichlorobenzene	1.0	ug/L	1.0	•	C	Yes
1,3-Dichlorobenzene	1.0	ug/L	1.0	r	_	Yes
1,4-Dichlorobenzene	1.0	ug/L	1.0	•	C	Yes
1,1-Dichloroethane	1.0	ug/L	1.0	•	C	Yes
1,2-Dichloroethane	1.0	ug/L	1.0	•	_	Yes
1,1-Dichloroethene	1.0	ug/L	1.0	ı	_	Yes
cis-1,2-Dichloroethene	1.0	ug/L	1.0	,	_	Yes
trans-1,2-Dichloroethene	1.0	ug/L	1.0	•	_	Yes

o-Xylene	m,p-Xylene	Vinyl chloride	1,2,4-Trimethylbenzene	Trichlorofluoromethane	Trichloroethene	1,1,2-Trichloroethane	1,1,1-Trichloroethane	1,2,4-Trichlorobenzene	1,2,3-Trichlorobenzene	Toluene	Tetrahydrofuran	Tetrachloroethene	1,1,2,2-Tetrachloroethane	Tert-Butyl Alcohol	Tert-Amyl Alcohol	Styrene	Methyl Tert Butyl Ether	4-Methyl-2-pentanone(MIBK)	Methylene chloride	Methylcyclohexane	Methyl Chloride	Methyl Bromide	Methyl Acetate	p-IsopropyItoluene	Isopropylbenzene	2-Hexanone	Freon 113	Ethylbenzene	trans-1,3-Dichloropropene	cis-1,3-Dichloropropene	1,2-Dichloropropane
																			*												
1.0	2.0	1.0	1.0	2.0	1.0	1.0	1.0	2.0	2.0	1.0	5.0	1.0	1.0	20	20	1.0	1.0	5.0	5.0	1.0	2.0	2.0	20	1.0	1.0	10	1.0	1.0	1.0	1.0	1.0
ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/t	ug/L	⊔g/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug∕L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	2.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
1	5	į.				Ģ			1				1	1	3	ř	įi	i		7	į	ı	ì	ï		,	į.	,		E	,
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	_		_			_	_	_	_	_	_	_					_	_	_	_	_	_	_	_		_		_	_	_
Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Sample ID: FA34302-9

Sample location: BMSMC Building 5 Area Sampling date: 5/25/2016

mpling date: 5/25/2016

Matrix: Groundwater

1410	יסטיי					
Analyte Name	Result	Units Di	Dilution Factor	Lab Flag	Validation	Reportable
Acetone	. 25	ug/L	1.0	1	C	Yes
Benzene	1.0	ug/L	1.0	1	C	Yes
Benzyl Chloride	2.0	ug/L	1.0	ı	C	Yes
Bromochloromethane	1.0	ug/L	1.0	3	C	Yes
Bromodichloromethane	1.0	ug/L	1.0	1	C	Yes
Bromoform	1.0	ug/L	1.0	•	C	Yes
2-Butanone (MEK)	5.0	ug/L	1.0		·/	Yes
Carbon disulfide	2.0	ug/L	1.0	1	C	Yes
Carbon tetrachloride	1.0	ug/L	1.0	ı	C	Yes
Chlorobenzene	0.79	ug/L	1.0	_	⊆	Yes
Chloroethane	2.0	ug/L	1.0	•	_	Yes
Chloroform	1.0	ug/L	1.0	ı	_	Yes
Cyclohexane	1.0	ng/L	1.0	ı	_	Yes
Dibromochloromethane	1.0	⊔g/L	1.0	•	C	Yes
1,2-Dibromo-3-chloropropane	5.0	ug/L	1.0	ı	<u>_</u>	Yes
1,2-Dibromoethane	2.0	ug/L	1.0		<u>_</u>	Yes
Dichlorodifluoromethane	20.2	ug/L	1.0	ı	1	Yes
1,2-Dichlorobenzene	2.4	ug/L	1.0	ı	1	Yes
1,3-Dichlorobenzene	1.0	ug/L	1.0	1	_	Yes
1,4-Dichlorobenzene	0.51	ug/L	1.0	_	⊆	Yes
1,1-Dichloroethane	1.0	ug/L	1.0	1	_	Yes
1,2-Dichloroethane	1.0	ug/L	1.0	,	_	Yes
1,1-Dichloroethene	1.0	ug/L	1.0	1	_	Yes
cis-1,2-Dichloroethene	0.65	ug/L	1.0	_	⊆	Yes
trans-1,2-Dichloroethene	1.0	ug/L	1.0	,	C	Yes

o-Xylene	m,p-Xylene	Vinyl chloride	1,2,4-Trimethylbenzene	Trichlorofluoromethane	Trichloroethene	1,1,2-Trichloroethane	1,1,1-Trichloroethane	1,2,4-Trichlorobenzene	1,2,3-Trichlorobenzene	Toluene	Tetrahydrofuran	Tetrachloroethene	1,1,2,2-Tetrachloroethane	Tert-Butyl Alcohol	Tert-Amyl Alcohol	Styrene	Methyl Tert Butyl Ether	4-Methyl-2-pentanone(MIBK)	Methylene chloride	Methylcyclohexane	Methyl Chloride	Methyl Bromide	Methyl Acetate	p-IsopropyItoluene	Isopropylbenzene	2-Hexanone	Freon 113	Ethylbenzene	trans-1,3-Dichloropropene	cis-1,3-Dichloropropene	1,2-Dichloropropane
1.0	2.0	1.0	1.0	2.0	0.62	1.0	1.0	2.0	2.0	1.0	5.0	0.47	1.0	20	20	1.0	1.0	5.0	5.0	1.0	2.0	2.0	20	1.0	1.0	10	1.0	1.0	1.0	1.0	1.0
ug/L	ug/L	⊔g/L	⊔g/L	ug/L	ug/L	ug/L	ug/L	ug/L	⊔g/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug∕L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	2.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
	,	ı		í	_	ì	i	1	,	,		_		,			,		ı	,	ı	,	,					ī		,	·
_	_	_	C	C	⊆	_	_	C	_	C	C	٤	_	u	U	_	_	_	C	C	C	C	_	_	C	_	C	C	□	U	C
Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

.

Sample ID: FA34302-10

Sample location: BMSMC Building 5 Area Sampling date: 5/25/2016

Matrix: Groundwater

trans-1,2-Dichloroethene	cis-1,2-Dichloroethene	1,1-Dichloroethene	1,2-Dichloroethane	1,1-Dichloroethane	1,4-Dichlorobenzene	1,3-Dichlorobenzene	1,2-Dichlorobenzene	Dichlorodifluoromethane	1,2-Dibromoethane	1,2-Dibromo-3-chloropropane	Dibromochloromethane	Cyclohexane	Chloroform	Chloroethane	Chlorobenzene	Carbon tetrachloride	Carbon disulfide	2-Butanone (MEK)	Bromoform	Bromodichloromethane	Bromochloromethane	Benzyl Chloride	Benzene	Acetone	Analyte Name	
1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	2.0	2.0	5.0	1.0	1.0	1.0	2.0	1.0	1.0	2.0	5.0	1.0	1.0	1.0	2.0	1.0	25	Result	
ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	_	
1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	Dilution Factor	
1	ŧ	,	,	ı	1		,	•	1	ı	1		1			,	1	٠	1		,		•	1	Lab Flag	
C	C	C	C	C	C	C	C	C	C	C	C	C	C	_	C	C	C	C	_	C	C	C	C	_	Validation	
Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Ye	Ye	Ye	Ye	Ye	Yes	Ye	Yes	Yes	Yes	n Reportable	

o-Xylene	m,p-Xylene	Vinyl chloride	1,2,4-Trimethylbenzene	Trichlorofluoromethane	Trichloroethene	1,1,2-Trichloroethane	1,1,1-Trichloroethane	1,2,4-Trichlorobenzene	1,2,3-Trichlorobenzene	Toluene	Tetrahydrofuran	Tetrachloroethene	1,1,2,2-Tetrachloroethane	Tert-Butyl Alcohol	Tert-Amyl Alcohol	Styrene	Methyl Tert Butyl Ether	4-Methyl-2-pentanone(MIBK)	Methylene chloride	Methylcyclohexane	Methyl Chloride	Methyl Bromide	Methyl Acetate	p-IsopropyItoluene	Isopropylbenzene	2-Hexanone	Freon 113	Ethylbenzene	trans-1,3-Dichloropropene	cis-1,3-Dichloropropene	1,2-Dichloropropane
1.0	2.0	1.0	1.0	2.0	1.0	1.0	1.0	2.0	2.0	1.0	5.0	1.0	1.0	20	20	1.0	1.0	5.0	5.0	1.0	2.0	2.0	20	1.0	1.0	10	1.0	1.0	1.0	1.0	1.0
ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug∕L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	2.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
1	2	Ŀ		ı	c	28				e		į	e	9	,,	c	,	e			C.		,	e;	g.t	ĸ	ı.	,	1.		4
C	C	C	C	C	C	C	C	—	C	C	_	C	C	C	C	C	_	_	C	C	C	C	C	C	C	C	C	C	_	C	C
Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

.

Sample ID: FA34302-11

Sample location: BMSMC Building 5 Area Sampling date: 5/25/2016

Matrix: AQ - Trip Blank Water

Analyte Name	Result	Units Di	Dilution Factor	Lab Flag	Validation	Reportable
Acetone	25	ug/L	1.0	1	C	Yes
Benzene	1.0	ug/L	1.0	1	C	Yes
Benzyl Chloride	2.0	ug/L	1.0	•	C	Yes
Bromochloromethane	1.0	ug/L	1.0	ı	C	Yes
Bromodichloromethane	1.0	ng/L	1.0	t	_	Yes
Bromoform	1.0	ug∕L	1.0	•	C	Yes
2-Butanone (MEK)	5.0	ug/L	1.0	•	C	Yes
Carbon disulfide	2.0	ug/L	1.0	,	C	Yes
Carbon tetrachloride	1.0	ug/L	1.0	1	C	Yes
Chlorobenzene	1.0	ug/L	1.0	1	C	Yes
Chloroethane	2.0	ug/L	1.0	1	C	Yes
Chloroform	1.0	ug/L	1.0		_	Yes
Cyclohexane	1.0	า/Bก	1.0	•	⊂	Yes
Dibromochloromethane	1.0	ug/L	1.0	1	C	Yes
1,2-Dibromo-3-chloropropane	5.0	ug∕L	1.0	1	_	Yes
1,2-Dibromoethane	2.0	ug∕L	1.0	1	<u>_</u>	Yes
Dichlorodifluoromethane	2.0	ug∕L	1.0	•	C	Yes
1,2-Dichlorobenzene	1.0	ug/L	1.0	ŧ	C	Yes
1,3-Dichlorobenzene	1.0	ug/L	1.0	1	⊂	Yes
1,4-Dichlorobenzene	1.0	ug/L	1.0	1	_	Yes
1,1-Dichloroethane	1.0	ug/L	1.0	1	<u>_</u>	Yes
1,2-Dichloroethane	1.0	ug/L	1.0		C	Yes
1,1-Dichloroethene	1.0	ug/L	1.0	ı	C	Yes
cis-1,2-Dichloroethene	1.0	ug/L	1.0	ı	C	Yes
trans-1,2-Dichloroethene	1.0	ug/L	1.0	ı	C	Yes

m,p-Xylene o-Xylene	Vinyl chloride	1,2,4-Trimethylbenzene	Trichlorofluoromethane	Trichloroethene	1,1,2-Trichloroethane	1,1,1-Trichloroethane	1,2,4-Trichlorobenzene	1,2,3-Trichlorobenzene	Toluene	Tetrahydrofuran	Tetrachloroethene	1,1,2,2-Tetrachloroethane	Tert-Butyl Alcohol	Tert-Amyl Alcohol	Styrene	Methyl Tert Butyl Ether	4-Methyl-2-pentanone(MIBK)	Methylene chloride	Methylcyclohexane	Methyl Chloride	Methyl Bromide	Methyl Acetate	p-IsopropyItoluene	Isopropylbenzene	2-Hexanone	Freon 113	Ethylbenzene	trans-1,3-Dichloropropene	cis-1,3-Dichloropropene	1,2-Dichloropropane
2.0 1.0	1.0	1.0	2.0	1.0	1.0	1.0	2.0	2.0	1.0	5.0	1.0	1.0	20	20	1.0	1.0	5.0	5.0	1.0	2.0	2.0	20	1.0	1.0	10	1.0	1.0	1.0	1.0	1.0
ng/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	J∕8n	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	2.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
()		1	ī	ŗ	,	1	Ċ	ī			i	,	1		i			i	ī	·	Ŷ	1	ř	1	ı	t.			ı	
c c	: ⊂	C	C	C	_	_	_	_	_	_	_	C	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	C	C
Yes Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

. .

Project Number	:_FA3430	2
Date:	_ May_25,	_2016
Shipping date:_		
EPA Region:		
<u> </u>		

REVIEW OF VOLATILE ORGANIC PACKAGE Low/Medium Volatile Data Validation

The following guidelines for evaluating volatile organics were created to delineate required validation actions. This document will assist the reviewer in using professional judgment to make more informed decision and in better serving the needs of the data users. The sample results were assessed according to USEPA data validation guidance documents in the following order of precedence: USEPA Hazardous Waste Support Section SOP No. HW-33A Revision 0 SOM02.2. Low/Medium Volatile Data Validation. July, 2015. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

are from the primary guidance document, unless other	wise noted.
The hardcopied (laboratory name)Accutest reviewed and the quality control and performance data	data package received has been summarized. The data review for VOCs included:
Lab. Project/SDG No.:FA34302	3;_FA34302-8
X Data CompletenessX Holding TimesX GC/MS TuningX Internal Standard PerformanceX BlanksX Surrogate RecoveriesX Matrix Spike/Matrix Spike Duplicate _OverallComments:VOA_TCL_list_(SW846_82600)	X Laboratory Control SpikesX Field DuplicatesX CalibrationsX Compound IdentificationsX Compound QuantitationX Quantitation Limits
Definition of Qualifiers: J- Estimated results U- Compound not detected R- Rejected data UJ- Estimated pondetect Reviewer: Date:June_8,_2016_	

DATA COMPLETENESS

MISSING INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED
-		
A =		
. 9		
	The state of the s	
	^	
	100	
4-8813 == 40		35
	50	- 8
-370 VI		
- Carlo		
-		

All criteria were met _	_X	
Criteria were not met		
and/or see below	_	

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE SAMPLED	DATE ANALYZE	D pH	ACTION		
All samples anal	lyzed within method	recommended he	olding time.	Sample preservation within		
required criteria.						
required criteria.						

<u>Criteria</u>

Aqueous samples – 14 days from sample collection for preserved samples (pH \leq 2, 4 \pm 2°C), no air bubbles.

Aqueous samples – 7 days from sample collection for unpreserved samples, 4°C, no air bubbles.

Soil samples- 14 days from sample collection.

Cooler temperature (Criteria: 4 + 2 °C): 3° C - OK

Actions

Aqueous samples

- a. If there is no evidence that the samples were properly preserved (pH < 2, T = 4° C \pm 2° C), but the samples were analyzed within the technical holding time [7 days from sample collection], no qualification of the data is necessary.
- b. If there is no evidence that the samples were properly preserved, and the samples were analyzed outside of the technical holding time [7 days from sample collection], qualify detects for all volatile compounds as estimated (J) and non-detects as unusable (R).
- c. If the samples were properly preserved, and the samples were analyzed within the technical holding time [14 days from sample collection], no qualification of the data is necessary.
- d. If the samples were properly preserved, but were analyzed outside of the technical holding time [14 days from sample collection], qualify detects as estimated (J) and non-detects as unusable (R).
- e. If air bubbles were present in the sample vial used for analysis, qualify detected compounds as estimated (UJ),

Non-aqueous samples

- a. If there is no evidence that the samples were properly preserved (T < -7°C or T = 4°C \pm 2°C and preserved with NaHSO₄), but the samples were analyzed within the technical holding time [14 days from sample collection], qualify detects for all volatile compounds as estimated (J) and non-detects as (UJ) or unusable (R) using professional judgment.
- b. If the samples were properly preserved, and the samples were analyzed within the technical holding time [14 days from sample collection], no qualification of the data is necessary.
- c. If there is no evidence that the samples were properly preserved, and the samples were analyzed outside of the technical holding time [14 days from sample collection], qualify detects for all volatile compounds as estimated (J) and non-detects as unusable (R).
- d. If the samples were properly preserved, but were analyzed outside of the technical holding time [14 days from sample collection], qualify detects as estimated (J) and non-detects as unusable (R).

Qualify TCLP/SPLP samples

- a. If the TCLP/SPLP ZHE procedure is performed within the extraction technical holding time of 14 days, detects and non-detects should not be qualified.
- b. If the TCLP/SPLP ZHE procedure is performed outside the extraction technical holding time of 14 days, qualify detects as estimated (J) and non-detects as unusable (R).
- c. If TCLP/SPLP aqueous samples and TCLP/SPLP leachate samples are analyzed within the technical holding time of 7 days, detects and non-detects should not be qualified.
- d. If TCLP/SPLP aqueous samples and TCLP/SPLP leachate samples are analyzed outside of the technical holding time of 7 days, qualify detects as estimated (J) and non-detects as unusable (R).

Table 1. Holding Time Actions for Low/Medium Volatile Analyses - Summary

			Action					
Matrix	Preserved	Criteria	Detected Associated Compounds	Non-Detected Associated Compounds				
	No	≤ 7 days	No o	lalification				
	No	> 7 days		R				
Aqueous	Yes	≤ 14 days	No qu	nalification				
	Yes	> 14 days	J	R				
Non Aguaga	No	≤ 14 days	J	Professional judgment, UJ or R				
Non-Aqueous	Yes	≤ 14 days	No qu	nalification				
	Yes/No	> 14 days	J	R				
TCLP/SPLP	Yes	≤ 14 days	No qi	alification				
TCLP/SPLP	No	> 14 days	J	R				

TCLP/SPLP	ZHE performed within the 14-day technical holding time	No qualification		
TCLP/SPLP	ZHE performed outside the 14-day technical holding time	J	R	
TCLP/SPLP aqueous & TCLP/SPLP leachate	Analyzed within 7 days	No qualification		
TCLP/SPLP aqueous & TCLP/SPLP leachate	Analyzed outside 7 days	J	R	
Sample tempera	ture outside 4°C ± 2°C he laboratory	Use profess	ional judgment	
Holding times g	rossly exceeded	J	R	

All criteria were met _	_X_	
Criteria were not met see below		

GC/MS TUNING

The assessment of the tuning results is to determine if the sample instrumentation is within the standard tuning QC limits

__X___The BFB performance results were reviewed and found to be within the specified criteria.

__X___ BFB tuning was performed for every 12 hours of sample analysis.

NOTES: All mass spectrometer instrument conditions must be identical to those used during the sample analysis. Background subtraction actions resulting in spectral distortions for the sole purpose of meeting the method specifications are contrary to the Quality Assurance (QA) objectives, and are therefore unacceptable.

NOTES: No data should be qualified based on BFB failure. Instances of this should be noted in the narrative.

All ion abundance ratios must be normalized to m/z 95, the nominal base peak, even though the ion abundance of m/z 174 may be up to 120% that of m/z 95.

Actions:

If samples are analyzed without a preceding valid instrument performance check, qualify all data in those samples as unusable (R).

If ion abundance criteria are not met, professional judgment may be applied to determine to what extent the data may be utilized. When applying professional judgment to this topic, the most important factors to consider are the empirical results that are relatively insensitive to location on the chromatographic profile and the type of instrumentation. Therefore, the critical ion abundance criteria for BFB are the m/z 95/96, 174/175, 174/176, and 176/177 ratios. The relative abundances of m/z 50 and 75 are of lower importance. This issue is more critical for Tentatively Identified Compounds (TICs) than for target analytes.

Note: State in the Data Review Narrative, decisions to use analytical data associated with BFB instrument performance checks not meeting contract requirements.

Note: Verify that that instrument instrument performance check criteria were achieved using techniques described in Low/Medium Volatiles Organic Analysis, Section II.D.5 of the SOM02.2 NFG, obtain additional information on the instrument performance checks. Make sure that background subtraction was performed from the BFB peak and not from background subtracting from the solvent front or from another region of the chromatogram.

	judgment to determine whether ass calibration compound.	er associated data should be	qualified based on the
List	the	samples	affected:
		· · · · · · · · · · · · · · · · · · ·	
If mass calibration	n is in error, all associated data a	are rejected.	

All criteria were met _X	
Criteria were not met	
and/or see below	

CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:05/27/16	05/24/16
Dates of continuing (initial) calibration:05/27/16	05/24/16
Dates of continuing calibration:	05/28/16
Dates of ending calibration:05/27/16	05/28/16
Instrument ID numbers:GCMSY	GCM\$J
Matrix/Level:Aqueous/low	Aqueous/low

DATE	LAB ID#	FILE	CRITERIA OUT RFs, %RSD, <u>%D</u> , r	COMPOUND	SAMPLES AFFECTED
GCMSY			· · · · · · · · · · · · · · · · · · ·		
05/27/16	ICV11	68-4	-22.4	Acetone*	None
		_			
	<u> </u>				
	J				

Note: Initial calibration, initial calibration verification, and continuing calibration verification within the validation guidance document required criteria. Closing calibration check verification included in data package.

Acetone ICV was outside the method performance criteria but within guidance document validation criteria \pm 40 % difference. No action taken.

Criteria

The analyte calibration criteria in the following Table must be obtained. Analytes not meeting the criteria are qualified.

A separate worksheet should be filled for each initial curve

Initial Calibration - Table 2. RRF, %RSD, and %D Acceptance Criteria for Initial Calibration and CCV for Low/Medium Volatile Analysis

Analyte	Minimum	Maximum	Opening	Closing	
•	RRF	%RSD	Maximum %D1	Maximum %D	
Dichlorodifluoromethane	0.010	25.0	±40.0	±50.0	
Chloromethane	0.010	20.0	±30.0	±50.0	
Vinyl chloride	0.010	20.0	±25.0	±50.0	
Bromomethane	0.010	40.0	±30.0	±50.0	
Chloroethane	0.010	40.0	±25.0	±50.0	
Trichlorofluoromethane	0.010	40.0	±30.0	±50.0	
1,1-Dichloroethene	0.060	20.0	±20.0	±25.0	
1,1,2-Trichloro-1,2,2-trifluoroethane	0.050	25.0	±25.0	±50.0	
Acetone	0.010	40.0	±40.0	±50.0	
Carbon disulfide	0.100	20.0	±25,0	±25.0	
Methyl acetate	0.010	40.0	±40.0	±50.0	
Methylene chloride	0.010	40.0	±30.0	±50.0	
trans-1,2-Dichloroethene	0.100	20.0	±20.0	±25.0	
Methyl tert-butyl ether	0.100	40.0	±25.0	±50.0	
1,1-Dichloroethane	0.300	20.0	±20.0	±25.0	
cis-1,2-Dichloroethene	0.200	20.0	±20.0	±25.0	
2-Butanone	0.010	40.0	±40.0	±50.0	
Bromochloromethane	0.100	20.0	±20.0	±25.0	
Chloroform	0.300	20.0	±20.0	±25.0	
1,1,1-Trichloroethane	0.050	20.0	±25.0	±25.0	
Cyclohexane	0.010	40.0	±25.0	±50,0	
Carbon tetrachloride	0.100	20.0	±25.0	±25.0	
Benzene	0.200	20.0	±20.0	±25.0	
1,2-Dichloroethane	0.070	20.0	±20.0	±25.0	
Trichloroethene	0.200	20.0	±20.0	±25.0	
Methylcyclohexane	0.050	40.0	±25.0	±50.0	
1,2-Dichloropropane	0.200	20.0	±20.0	±25.0	
Bromodichloromethane	0.300	20.0	±20.0	±25.0	
cis-1,3-Dichloropropene	0.300	20.0	±20.0	±25.0	
4-Methyl-2-pentanone	0.030	25.0	±30.0	±50.0	
Toluene	0.300	20.0	±20.0	±25.0	
trans-1,3-Dichloropropene	0.200	20.0	±20.0	±25.0	
1,1,2-Trichloroethane	0.200	20.0	±20.0	±25.0	
Tetrachloroethene	0.100	20.0	±20.0	±25.0	
2-Hexauone	0.010	40.0	±40.0	±50.0	
Dibromochloromethane	0.200	20.0	±20.0	±25.0	
1,2-Dibromoethane	0.200	20.0	±20.0	±25.0	
Chlorobenzene	0.400	20.0	±20.0	±25.0	
Ethylbenzene	0.400	20.0	±20.0	±25.0	

Analyte	Minimum RRF	Maximum %RSD	Opening Maximum %D ¹	Closing Maximum
m.p-Xylene	0.200	20.0	±20.0	±25.0
o-Xylene	0.200	20.0	±20.0	±25.0
Styrene	0.200	20.0	±20.0	±25.0
Bromoform	0.100	20.0	±25.0	±50.0
Isopropylbenzene	0.400	20.0	±25.0	±25.0
1,1.2.2-Tetrachloroethane	0.200	20.0	±25.0	±25.0
1,3-Dichlorobenzene	0.500	20.0	±20.0	±25.0
1,4-Dichlorobenzene	0.600	20.0	±20.0	±25.0
1,2-Dichlorobenzene	0.600	20.0	±20.0	±25.0
1,2-Dibromo-3-chloropropane	0.010	25.0	±30.0	±50.0
1,2,4-Trichlorobenzene	0.400	20.0	±30.0	±50.0
1,2,3-Trichlorobenzene	0.400	25.0	±30.0	±50.0
Deuterated Monitoring Compound				
Vinyl chloride-d3	0.010	20.0	±30.0	±50.0
Chloroethane-ds	0.010	40.0	±30.0	±50.0
1,1-Dichloroethene-d2	0.050	20.0	±25.0	±25.0
2-Butanone-ds	0.010	40.0	±40.0	±50.0
Chloroform-d	0.300	20.0	±20.0	±25.0
1,2-Dichloroethane-d4	0.060	20.0	±25.0	±25.0
Benzene-de	0.300	20.0	±20.0	±25.0
1,2-Dichloropropane-ds	0,200	20.0	±20.0	±25.0
Toluene-da	0.300	20.0	±20.0	±25,0
trans-1.3-Dichloropropene-d4	0.200	20.0	±20.0	±25.0
2-Hexanone-ds	0.010	40.0	±40.0	±50.0
1,1,2,2-Tetrachloroethane-da	0.200	20.0	±25.0	±25.0
1,2-Dichlorobenzene-d4	0.400	20.0	±20.0	±25.0

If a closing CCV is acting as an opening CCV, all target analytes and DMCs must meet the requirements for an opening CCV.

Actions:

- 1. If any volatile target compound has an RRF value less than the minimum in the table, use professional judgment for detects, based on mass spectral identification, to qualify the data as estimated (J+ or R).
 - a. If any volatile target compound has an RRF value less than the minimum criterion, qualify non-detected compounds as unusable (R).
 - b. If any of the volatile target compounds listed in the Table has %RSD greater than the criteria, qualify detects as estimated (J), and non-detected compounds using professional judgment.
 - c. If the volatile target compounds meet the acceptance criteria for RRF and the %RSD, no qualification of the data is necessary.

- d. No qualification of the data is necessary on the DMC RRF and %RSD data alone. Use professional judgment and follow the guidelines in Action 2 to evaluate the DMC RRF and %RSD data in conjunction with the DMC recoveries to determine the need for qualification of data.
- 2. At the reviewer's discretion, and based on the project-specific Data Quality Objectives (DQOs), a more in-depth review may be considered using the following guidelines:
 - a. If any volatile target compound has a %RSD greater than the maximum criterion in the Table, and if eliminating either the high or the low-point of the curve does not restore the %RSD to less than or equal to the required maximum:
 - Qualify detects for that compound(s) as estimated (J).
 - ii. Qualify non-detected volatile target compounds using professional judgment.
 - b. If the high-point of the curve is outside of the linearity criteria (e.g., due to saturation):
 - i. Qualify detects outside of the linear portion of the curve as estimated (J).
 - ii. No qualifiers are required for detects in the linear portion of the curve.
 - iii. No qualifiers are required for volatile target compounds that were not detected.
 - c. If the low-point of the curve is outside of the linearity criteria:
 - Qualify low-level detects in the area of non-linearity as estimated (J).
 - ii. No qualifiers are required for detects in the linear portion of the curve.
 - iii. For non-detected volatile compounds, use the lowest point of the linear portion of the curve to determine the new quantitation limit.

Note: If the laboratory has failed to provide adequate calibration information, inform the Region's designated representative to contact the laboratory and request the necessary information. If the information is not available, the reviewer must use professional judgment to assess the data.

State in the Data Review Narrative, if possible, the potential effects on the data due to calibration criteria exceedance.

Note, for the Laboratory COR action, if calibration criteria are grossly exceeded.

Table. Initial Calibration Actions for Low/Medium Volatile Analysis – Summary

Criteria	Action		
Cincin	Detect	Non-detect	
Initial Calibration not performed at specified frequency and sequence	Use professional judgenent R	Use professional judgment R	
Initial Calibration not performed at the specified concentrations	J	UJ	
RRF < Minimum RRF in Table for target analyte	Use professional judgment J+ or R	R	
RRF Minimum RRF in Table for target analyte	No qualification	No qualification	
*•RSD > Maximum *•RSD in Table for thrust analyte	J	Use professional judgment	
%RSD Maximum %RSD in Table for target analyte	No qualification	No qualification	

All criteria were metX	
Criteria were not met	
and/or see below	

Continuing Calibration Verification (CCV)

NOTE: Verify that the CCV was run at the required frequency (an opening and closing CCV must be run within 12-hour period) and the CCV was compared to the correct initial calibration. If the midpoint standard from the initial calibration is used as an opening CCV, verify that the result (RRF) of the mid-point standard was compared to the average RRF from the correct initial calibration.

The closing CCV used to bracket the end of a 12-hour analytical sequence may be used as the opening CCV for the new 12-hour analytical sequence, provided that all the technical acceptance criteria are met for an opening CCV (see criteria show before in the Table). If the closing CCV does not meet the technical acceptance criteria for an opening CCV, then a BFB tune followed by an opening CCV is required and the next 12-hour time period begins with the BFB tune.

All DMCs must meet RRF criteria. No qualification of the data is necessary on the DMCs RRF and %RSD/%D data alone. However, use professional judgment to evaluate the DMC and %RSD/%D data in conjunction with the DMC recoveries to determine the need of qualification the data.

Action:

- 1. If a CCV (opening and closing) was not run at the appropriate frequency, qualify data using professional judgment.
- 2. Qualify all volatile target compounds in Table shown before using the following criteria:
 - a. For an opening CCV, if any volatile target compound has an RRF value less than the minimum criterion, use professional judgment for detects, based on mass spectral identification, to qualify the data as estimated (J) and qualify non-detected compounds as unusable (R).
 - b. For a closing CCV, if any volatile target compound has an RRF value less than the criteria, use professional judgment for detects based on mass spectral identification to qualify the data as estimated (J), and qualify non-detected compounds as unusable (R).
 - c. For an opening CCV, if the Percent Difference value for any of the volatile target compounds is outside the limits in calibration criteria Table shown before, qualify detects as estimated (J) and non-detected compounds as estimated (UJ).
 - d. For a closing CCV, if the Percent Difference value for any volatile target compound is outside the limits in calibration criteria table, qualify detects as estimated (J) and non-detected compounds as estimated (UJ).
 - e. If the volatile target compounds meet the acceptable criteria for RRF and the Percent Difference, no qualification of the data is necessary.
 - f. No qualification of the data is necessary on the DMC RRF and the Percent Difference data alone. Use professional judgment to evaluate the DMC RRF and Percent Difference

data in conjunction with the DMC recoveries to determine the need for qualification of data.

Notes: If the laboratory has failed to provide adequate calibration information, inform the Region's designated representative to contact the laboratory and request the necessary information. If the information is not available, the reviewer must use professional judgment to assess the data.

State in the Data Review Narrative, if possible, the potential effects on the data due to calibration criteria exceedance.

Note, for Contract Laboratory COR action, if calibration criteria are grossly exceeded.

Table. Continuing Calibration Actions for Low/Medium Volatile Analysis – Summary

Criteria for Opening	Criteria for	Ac	ction
CCV	Closing CCV	Detect	Non-detect
CCV not performed at required frequency	CCV not performed at required frequency	Use professional judgment R	Use professional judgment R
CCV not performed at specified concentration	CCV not performed at specified concentration	Use professional judgment	Use professional judgment
RRF < Minimum RRF in Table 2 for target analyte	RRF < Minimum RRF in Table for target analyte	Use professional judgment J or R	R
RRF ≥ Minimum RRF in Table 2 for target analyte	RRF ≥ Minimum RRF in Table for target analyte	No qualification	No qualification
%D outside the Opening Maximum %D limits in Table 2 for target analyte	%D outside the Closing Maximum %D limits in Table for target analyte	J	UJ
%D within the inclusive Opening Maximum %D limits in Table 2 for target analyte	%D within the inclusive Closing Maximum %D limits in Table for target analyte	No qualification	No qualification

All criteria were metX
Criteria were not met
and/or see below

BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contamination in the blanks below. High and low levels blanks must be treated separately.

The concentration of a target analyte in any blank must not exceed its Contract Required Quantitation Limit (CRQL) (2x CRQLs for Methylene chloride, Acetone, and 2-Butanone). TIC concentration in any blanks must be $\leq 5.0 \,\mu\text{g/L}$ for water (0.0050 mg/L for TCLP leachate) and $\leq 5.0 \,\mu\text{g/kg}$ for soil matrices.

Laboratory blanks

The method blank, like any other sample in the SDG, must meet the technical acceptance criteria for sample analysis.

DATE ANALYZED	LABID	LEVEL/ MATRIX	COMPOUND	CONCENTRATIO UNITS	N
_No_target_an		_method_blan	ks_except_in_the_cases_d	escribed_in_this	docu
05/27/16	VY1168-MB	Soil/low	Methylene_chloride		_
Note:			sample FA34302-7 at a coesults as (BJ), no further qu		eporting
Field/ <u>Equipme</u>	nt/Trip blank				
If field or trip b method blanks.		, the data revi	ewer should evaluate this o	data in a similar fashio	n as the
DATE ANALYZED	LAB ID	LEVEL! MATRIX	COMPOUND	CONCENTRATION UNITS	l
			ipment_blanks_except_in_t s_data_package		
_05/28/16	FA34302-2	Aq./low	Acetone	16.7_ug/l	
			tert-butyl_alcohol	16.5_ug/l	_

Note: No action taken, analytes found in equipment blank below the reporting limit.

All criteria were met	X
Criteria were not met	
and/or see below	

BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

Note:

All fields blank results associated with a particular group of samples (may exceed one per case) must be used to qualify data. Trip blanks are used to qualify only those samples with which they were shipped. Blanks may not be qualified because of contamination in another blank. Field blanks and trip blanks must be qualified for system monitoring compounds, instrument performance criteria, and spectral or calibration QC problems.

Samples taken from a drinking water tap do not have associated field blanks.

When applied as described in the Table below, the contaminant concentration in the blank is multiplied by the sample dilution factor.

Table. Blank and TCLP/SPLP LEB Actions for Low/Medium Volatile Analysis

Blank Type	Blank Result	Sample Result	Action for Samples
	Detects	Not detected	No qualification required
	< CRQL *	< CRQL*	Report CRQL value with a U
	CKQL.	≥CRQL*	No qualification required
Method,		< CRQL*	Report CRQL value with a U
Storage, Field,	> CRQL *	≥ CRQL* and ≤	Report blank value for sample
Trip,		blank concentration	concentration with a U
TCLP/SPLP		≥ CRQL* and >	No qualification required
LEB, Instrument**		blank concentration	140 quantienton required
		≤ CRQL*	Report CRQL value with a U
		> CRQL*	No qualification required
	Gross	Detects	Report blank value for sample
	contamination	Detects	concentration with a U

^{* 2}x the CRQL for methylene chloride, 2-butanone and acetone.

Action Levels (ALs) should be based upon the highest concentration of contaminant determined in any blank. Do not qualify any blank with another blank. The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. No positive sample results should be reported unless the concentration of the compound in the samples exceeds the ALs:

^{**} Qualifications based on instrument blank results affect only the sample analyzed immediately after the sample that has target compounds that exceed the calibration range or non-target compounds that exceed 100 µg/L.

Notes:

High and low level blanks must be treated separately Compounds qualified "U" for blank contamination are still considered "hits" when qualifying for calibration criteria.

CONTAMINATION SOURCE/LEVEL	COMPOUND	CONC/UNITS	AL/UNITS	SQL	AFFECTED SAMPLES
					- TOTAL
					100000
				1 (SSSS)	
			-		
_					
	and the same of th				
	- THE STATE OF THE				
- 10 TEN SER					
No.			<u> </u>		

All criteria were met _	Х_
Criteria were not met	
and/or see below	

DEUTERATED MONITORING COMPOUNDS (DMCs)

Laboratory performance of individual samples is established by evaluation of surrogate spike (DMCs) recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

Table. Volatile Deuterated Monitoring Compounds (DMCs) and Recovery Limits

DMC	%R for Water Sample	%R for Soil Sample
Vinyl chloride-d3	60-135	30-150
Chloroethane-d5	70-130	30-150
1,1-Dichloroethene-d2	60-125	45-110
2-Butanone-d5	40-130	20-135
Chloroform-d	70-125	40-150
1,2-Dichloroethane-d4	70-125	70-130
Benzene-d6	70-125	20-135
1,2-Dichloropropane-d6	70-120	70-120
Toluene-d8	80-120	30-130
trans-1,3-	60-125	30-135
Dichloropropene-d4		
2-Hexanone-d5	45-130	20-135
1,1,2,2-	65-120	45-120
Tetrachloroethane-d2		
1,2-Dichlorobenzene-d4	80-120	75-120

NOTE: The recovery limits for any of the compounds listed in the above Table may be expanded at any time during the period of performance if the United States Environmental Protection Agency (EPA) determines that the limits are too restrictive.

Action:

Are recoveries for DMCs in volatile samples and blanks must be within the limits specified in the Table above.

Yes? or No?

NOTE: The recovery limits for any of the compounds listed in the Table above may be expanded at any time during the period of performance if USEPA determines that the limits are too restrictive.

List the DMCs that may fail to meet the recovery limits

Sample ID

Date

DMCs

% Recovery

Action

DMCs recoveries within the required limits except in the cases described in this document. 4-bromofluorobenzene 29 % recovery in sample FA34302-6 due to matrix interference; control limit: 71 – 133 %. Re-run of sample FA34302-6, recoveries of surrogates standards within laboratory control limits. No action taken. Other non-deuterated surrogates added to the samples within laboratory control limits.

Note: Any sample which has more than 3 DMCs outside the limits must be reanalyzed. Action:

- 1. For any recovery greater than the upper acceptance limit:
 - a. Qualify detected associated volatile target compounds as estimated high (J+).
 - b. Do not qualify non-detected associated volatile target compounds.
- 2. For any recovery greater than or equal to 10%, and less than the lower acceptance limit
 - a. Qualify detected associated volatile target compounds as estimated low (J-).
 - b. Qualify non-detected associated volatile target compounds as estimated (UJ).
- 3. For any recovery less than 10%:
 - a. Qualify detected associated volatile target compounds as estimated low (J-).
 - b. Qualify non-detected associated volatile target compounds as unusable (R).
- 4. For any recovery within acceptance limits, no qualification of the data is necessary.
- 5. In the special case of a blank analysis having DMCs out of specification, the reviewer must give special consideration to the validity of associated sample data. The basic concern is whether the blank problems represent an isolated problem with the blank alone, or whether there is a fundamental problem with the analytical process. For example, if one or more samples in the batch show acceptable DMC recoveries, the reviewer may choose to consider the blank problem to be an isolated occurrence. However, even if this judgment allows some use of the affected data, note analytical problems for Contract Laboratory COR action.
- 6. If more than three DMCs are outside of the recovery limits for Low/Medium volatiles analysis and the sample was not reanalyzed, note under Contract Problems/Non-Compliance.

Table. Deuterated Monitoring Compound (DMC) Recovery Actions for Low/Medium Volatiles Analyses – Summary

	Action		
Criteria	Detect Associated Compounds	Non-detected Associated Compounds	
%R < 10%	J-	R	
10% ≤ % R < Lower Acceptance Limit	J-	UJ	
Lower Acceptance Limit \leq %R \leq Upper Acceptance Limit	No qualification	No qualification	
%R > Upper Acceptance Limit	J+	No qualification	

MATRIX SPIKE/MATRIX SPIKE DUPLICATE

The QC reported here applies to the following samples: FA34302-4, FA34302-5, FA34302-6, FA34302-7

Method: SW846 8260C

Compound	FA3430 ug/kg)1-1 Q	Spike ug/kg	MS ug/kg	MS %	Spike ug/kg	MSD ug/kg	MSD %	RPD	Limits Rec/RPD
Acetone	15.0	J	288	151	47*	291	170	53*	12	61-152/27
2-Butanone (MEK)	ND		288	200	69*	291	208	71*	4	75-137/25
Carbon Disulfide	ND		57.6	43.5	75	58.3	41.6	71*	4	72-122/29
Carbon Tetrachloride	ND		57.6	45.3	79	58.3	41.7	72*	8	78-133/29
Chloroform	ND		57.6	45.5	79	58.3	40.8	70*	11	72-123/26
Cyclohexane	ND		57.6	48.1	83	58.3	42.2	72*	13	73-126/32
1,3-Dichlorobenzene	ND		57.6	53.9	94	58.3	46.7	80*	14	81-129/33
1,1-Dichloroethylene	ND		57.6	44.8	78*	58.3	41.9	72*	7	81-136/28
Freon 113	ND		57.6	40.9	71	58.3	38.2	66*	7	71-129/30
Methylcyclohexane	ND		57.6	47.2	82	58.3	43.4	74*	8	75-128/31
Methylene Chloride	16.4	В	57.6	56.0	69*	58.3	50.6	59*	10	74-137/28

Note: No action taken, professional judgment. MS/MSD criteria apply to the unspiked sample. Unspiked sample belongs to another data package.

* If QC limits are not available, use limits of 70 – 130 %.

Actions:

1. No qualification of the data is necessary on MS and MSD data alone. However, using professional judgment, the validator may use the MS and MSD results in conjunction with other QC criteria and determine the need for some qualification of the data.

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

MS/MSD criteria apply only to the unspiked sample, its dilutions, and the associated MS/MSD samples:

If the % R for the affected compounds were < LL (or 70 %), qualify positive results (J) and nondetects (UJ).

If the % R for the affected compounds were > UL (or 130 %), only qualify positive results (J). If 25 % or more of all MS/MSD %R were < LL (or 70 %) or if two or more MS/MSD %Rs were < 10%, qualify all positive results (J) and reject nondetects (R).

A separate worksheet should be used for each MS/MSD pair.

^{*} QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.

All criteria were melX
Criteria were not met
and/or see below

LABORATORY CONTROL SAMPLE (LCS) ANALYSIS

This data is generated to determine accuracy of the analytical method for various matrices.

1. LCS Recoveries Criteria

Where LCS spiked with the same analyte at the same concentrations as the MS/MSD? Yes or No. If no make note in data review memo.

List the %R of compounds which do not meet the criteria

	LCS ID	COMPOUND	% R	QC LIMIT	
Recoverie	es_(blank_spike	e)_within_laboratory_contro	l_limits		
			# 3.730 V2		

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 70 130 %.

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

All analytes in the associated sample results are qualified for the following criteria.

If 25 % of the LCS recoveries were < LL (or 70 %), qualify all positive results (j) and reject nondetects (R).

If two or more LCS were below 10 %, qualify all positive results as (J) and reject nondetects (R).

2. Frequency Criteria:

Where LCS analyzed at the required frequency and for each matrix? Yes or No.

If no, the data may be affected. Use professional judgment to determine the severity of the effect and qualify data accordingly. Discuss any actions below and list the samples affected.

		All criteria were metX Criteria were not met and/or see below
IX.	FIELD/LABORATORY DUPLICATE PRECISION	
	Sample IDs:FA34302-4/-5	Matrix:Soil

Field/laboratory duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

The project QAPP should be reviewed for project-specific information.

NOTE: In the absence of QAPP guidance for validating data from field duplicates, the following action will be taken.

Identify which samples within the data package are field duplicates. Estimate the relative percent difference (RPD) between the values for each compound. Use professional judgment to note large RPDs (> 50%) in the narrative.

COMPOUND	SQL	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION	
Field duplica			olean DDD within and			
Field duplicate analyzed with this data package. RPD within required criteria, < 50 % for target analytes detected in sample and duplicate.						
					,	

Actions:

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria. For organics, only the sample and duplicate will be qualified.

If an RPD cannot be calculated because one or both of the sample results is not detected, the following actions are suggested based on professional judgment:

If one sample result is not detected and the other is greater than 5x the SQL qualify (J/UJ).

If one sample value is not detected and the other is greater than 5x the SQL and the SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is less than 5x, use professional judgment to determine if qualification is appropriate.

If both sample and duplicate results are not detected, no action is needed.

All criteria were met ____ Criteria were not mel and/or see below __X__

X. INTERNAL STANDARD PERFORMANCE

The assessment of the internal standard (IS) parameter is used to assist the data reviewer in determining the condition of the analytical instrumentation.

DATE	SAMPLE ID	IS OUT	IS AREA	ACCEPTABLE RANGE	ACTION
05/27/16	FA34302(a)	1,4-dichlorobenzene- d4	869798	169399-677594	No action

Internal standard area counts within the required criteria except the cases described in this document.

(a) Confirmation run for surrogate recoveries.

Action:

- If an internal standard area count for a sample or blank is greater than 200.0% of the area for the associated standard (opening CCV or mid-point standard from initial calibration) (see Table below):
 - a. Qualify detects for compounds quantitated using that internal standard as estimated low (J-).
 - b. Do not qualify non-detected associated compounds.
- 2. If an internal standard area count for a sample or blank is less than 20.0% of the area for the associated standard (opening CCV or mid-point standard from initial calibration):
 - Qualify detects for compounds quantitated using that internal standard as estimated high (J+).
 - Qualify non-detected associated compounds as unusable (R).
- 3. If an internal standard area count for a sample or blank is greater than or equal to 20.0%, and less than or equal to 200% of the area for the associated standard opening CCV or mid-point standard from initial calibration, no qualification of the data is necessary.
- 4. If an internal standard RT varies by more than 30.0 seconds: Examine the chromatographic profile for that sample to determine if any false positives or negatives exist. For shifts of a large magnitude, the reviewer may consider partial or total rejection of the data for that sample fraction. Detects should not need to be qualified as unusable (R) if the mass spectral criteria are met.
- 5. If an internal standard RT varies by less than or equal to 30.0 seconds, no qualification of the data is necessary.

Note: Inform the Contract Laboratory Program Project Officer (CLP PO) if the internal standard performance criteria are grossly exceeded. Note in the Data Review Narrative potential effects on the data resulting from unacceptable internal standard performance.

- 6. If required internal standard compounds are not added to a sample or blank, qualify detects and non-detects as unusable (R).
- 7. If the required internal standard compound is not analyzed at the specified concentration in a sample or blank, use professional judgment to qualify detects and non-detects.

Table. Internal Standard Actions for Low/Medium Volatiles Analyses - Summary

	Act	tion
Criteria	Detected Associated Compounds*	Non-detected Associated Compounds*
Area counts > 200% of 12-hour standard (opening CCV or mid-point standard from initial calibration)	J-	No qualification
Area counts < 20% of 12-hour standard (opening CCV or mid-point standard from initial calibration)	J+	R
Area counts ≥ 50% but ≤ 200% of 12-hour standard (opening CCV or mid-point standard from initial calibration)	No qualification	
RT difference > 30.0 seconds between samples and 12-hour standard (opening CCV or mid-point standard from initial calibration)	R **	R
RT difference ≤ 30.0 seconds between samples and 12-hour standard (opening CCV or mid-point standard from initial calibration)	No qualification	

^{*} For volatile compounds associated to each internal standard, see TABLE - VOLATILE TARGET ANALYTES, DEUTERATED MONITORING COMPOUNDS WITH ASSOCIATED INTERNAL STANDARDS FOR QUANTITATION in SOM02.2, Exhibit D, available at: http://www.epa.gov/superfund/programs/clp/download/som/som22d.pdf ** Detects should not need to be qualified as unusable (R) if the mass spectral criteria are met.

Action:

	A .	All criteria were metX Criteria were not met and/or see below
TARGET COM	POUND IDENTIFICATION	
Criteria:		
		pounds within ±0.06 RRT units of the standard or mid-point standard from the initial calibration]. Yes? or No?
List compound	Is not meeting the criteria described above:	
Sample ID	Compounds	Actions
spectrum from calibration)] ma a. b.	In the associated calibration standard (op- ust match according to the following criteria. All ions present in the standard mass sp must be present in the sample spectrum. The relative intensities of these ions must sample spectra (e.g., for an ion with an a corresponding sample ion abundance mu- lons present at greater than 10% in the standard spectrum, must be evaluated interpretation.	ectrum at a relative intensity greater than 10% at agree within ±20% between the standard and bundance of 50% in the standard spectrum, the
List compound	s not meeting the criteria described above:	
Sample ID	Compounds	Actions

- 1. The application of qualitative criteria for GC/MS analysis of target compounds requires professional judgment. It is up to the reviewer's discretion to obtain additional information from the laboratory. If it is determined that incorrect identifications were made, qualify all such data as unusable (R).
- Use professional judgment to qualify the data if it is determined that cross-contamination has occurred.
- Note in the Data Review Narrative any changes made to the reported compounds or concerns regarding target compound identifications. Note, for Contract Laboratory COR action, the necessity for numerous or significant changes.

TENTATIVELY IDENTIFIED COMPOUNDS (TICS)

NOTE: Tentatively identified compounds should only be evaluated when requested by a party from outside of the Hazardous Waste Support Section (HWSS).

ı.	ict	T	Ce
E.	ISI	- 11	IL .S

Sample ID	Compound	Sample ID	Compound

Action:

- 1. Qualify all TIC results for which there is presumptive evidence of a match (e.g. greater than or equal to 85% match) as tentatively identified (NJ), with approximated concentrations. TICs labeled "unknown" are qualified as estimated (J).
- 2. General actions related to the review of TIC results are as follows:
 - a. If it is determined that a tentative identification of a non-target compound is unacceptable, change the tentative identification to "unknown" or another appropriate identification, and qualify the result as estimated (J).
 - b. If all contractually-required peaks were not library searched and quantitated, the Region's designated representative may request these data from the laboratory.
- 3. In deciding whether a library search result for a TIC represents a reasonable identification, use professional judgment. If there is more than one possible match, report the result as "either compound X or compound Y". If there is a lack of isomer specificity, change the TIC result to a nonspecific isomer result (e.g., 1,3,5-trimethyl benzene to trimethyl benzene isomer) or to a compound class (e.g., 2-methyl, 3-ethyl benzene to a substituted aromatic compound).

- 4. The reviewer may elect to report all similar compounds as a total (e.g., all alkanes may be summarized and reported as total hydrocarbons).
- 5. Target compounds from other fractions and suspected laboratory contaminants should be marked as "non-reportable".
- 6. Other Case factors may influence TIC judgments. If a sample TIC match is poor, but other samples have a TIC with a valid library match, similar RRT, and the same ions, infer identification information from the other sample TIC results.
- 7. Note in the Data Review Narrative any changes made to the reported data or any concerns regarding TIC identifications.
- 8. Note, for Contract Laboratory COR action, failure to properly evaluate and report TICs

All criteria were met _	X
Criteria were not met	
and/or see below	

SAMPLE QUANTITATION AND REPORTED CONTRACT REQUIRED QUANTITATION LIMITS (CRQLS)

Action:

- 1. If any discrepancies are found, the Region's designated representative may contact the laboratory to obtain additional information that could resolve any differences. If a discrepancy remains unresolved, the reviewer must use professional judgment to decide which value is the most accurate. Under these circumstances, the reviewer may determine that qualification of data is warranted. Note in the Data Review Narrative a description of the reasons for data qualification and the qualification that is applied to the data.
- 2. For non-aqueous samples, in the percent moisture is less than 70.0%, no qualification of the data is necessary. If the percent moisture is greater than or equal to 70.0% and less than 90.0%, qualify detects as estimated (J) and non-detects as approximated (UJ). If the percent moisture is greater than or equal to 90.0%, qualify detects as estimated (J) and non-detects as unusable (R) (see Table below).
- 3. Note, for Contract Laboratory COR action, numerous or significant failures to accurately quantify the target compounds or to properly evaluate and adjust CRQLs.
- 4. Results between MDL and CRQL should be qualified as estimated "J".
- 5. Results < MDL should be reported at the CRQL and qualified "U". MDLs themselves are not reported.

Table. Percent Moisture Actions for Low/Medium Volatiles Analysis for Non-Aqueous Samples

Criteria	Action		
	Detected Associated Compounds	Non-detected Associated Compounds	
% Moisture < 70.0	No qualification		
70.0 < % Moisture < 90.0	J	UJ	
% Moisture > 90.0	J	R	

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

Sample ID

FA34302-1

Cyclohexane

RF = 0.475

[] = (45621)(50)/(0.475)(1067726) = 4.5 ppb Ok

B.	Percent Solids			
	List samples which have ≥ 70 % solids			
		_		
		_		

All criteria were met _X	
Criteria were not met	
and/or see below	

QUANTITATION LIMITS

A. Dilution performed

SAMPLE ID	DILUTION FACTOR	REASON FOR DILUTION
<u> </u>		
10000		
All Parties		

2.

OTHE	ER ISSUES		Criteria were not met
Α.	System Performance		
List sa	amples qualified based or	the degradation of system pe	erformance during simple analysis:
Samp	ole ID ====================================	Comments	Actions
No	degradation_of_system_p	erformance_observed.	
Action			
during	g sample analyses. Info	qualify the data if it is determing the Contract Laboratory ance which significantly affects	ned that system performance has degrade Program COR any action as a result of ed the data.
B.	Overall Assessment of I	Data	
List sa	amples qualified based on	other issues:	
Samp	le ID	Comments	Actions
No; _be_u	additional_issues_observeused_for_decission_purpo	ses	of_the_dataResults_are_valid_andcan
Action 1.	Use professional judgme	ent to determine if there is any	need to qualify data which were not qualified
	 based on the Quality Co 	ntrol (QC) criteria previously dis	scussed.

Write a brief narrative to give the user an indication of the analytical limitations of the data. Inform the

Contract Laboratory COR the action, any inconsistency of the data with the Sample Delivery Group (SDG) Narrative. If sufficient information on the intended use and required quality of the data is available, the reviewer should include their assessment of the usability of the data within the given

context. This may be used as part of a formal Data Quality Assessment (DQA).

32